• 제목/요약/키워드: local denting

검색결과 10건 처리시간 0.019초

A Parameter Study for Static and Dynamic Denting

  • Jung, Dong-Won;Worswick, M.J.
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.2009-2020
    • /
    • 2004
  • A parametric study of the factors controlling static and dynamic denting, as well as local stiffness, has been made on simplified panels of different sizes, curvatures, thicknesses and strengths. Analyses have been performed using the finite element method to predict dent resistance and panel stiffness. A parametric approach is used with finite element models of simplified panels. Two sizes of panels with square plan dimensions and a wide range of curvatures are analysed for several combinations of material thickness and strength, all representative of auto-motive closure panels. Analysis was performed using the implicit finite element code, LS-NIKE, and the explicit dynamic code, LS-DYNA for the static and dynamic cases, respectively. Panel dent resistance and stiffness behaviour are shown to be complex phenomena and strongly interrelated. Factors favouring improved dent resistance include increased yield strength and panel thickness. Panel stiffness also increases with thickness and with higher curvatures but decreases with size and very low curvatures. Conditions for best dynamic and static dent performance are shown to be inherently in conflict ; that is, panels with low stiffness tend to perform well under impact loading but demonstrate inferior static dent performance. Stiffer panels are prone to larger dynamic dents due to higher contact forces but exhibit good static performance through increased resistance to oil canning.

Damage analysis of three-leg jacket platform due to ship collision

  • Jeremy Gunawan;Jessica Rikanti Tawekal;Ricky Lukman Tawekal;Eko Charnius Ilman
    • Ocean Systems Engineering
    • /
    • 제13권4호
    • /
    • pp.385-399
    • /
    • 2023
  • A collision between a ship and an offshore platform may result in structural damage and closure; therefore, damage analysis is required to ensure the platform's integrity. This paper presents a damage assessment of a three-legged jacket platform subjected to ship collisions using the industrial finite element program Bentley SACS. This study considers two ships with displacements of 2,000 and 5,000 tons and forward speeds of 2 and 6.17 meters per second. Ship collision loads are applied as a simplified point load on the center of the platform's legs at inclinations of 1/7 and 1/8; diagonal bracing is also included. The jacket platform is modelled as beam elements, with the exception of the impacted jacket members, which are modelled as nonlinear shell elements with elasto-plastic material and constant isotropic hardening to provide realistic dented behavior due to ship collision load. The structural response is investigated, including kinetic energy transfer, stress distribution, and denting damage. The simulation results revealed that the difference in leg inclination has no effect on the level of localized denting damage. However, it was discovered that a leg with a greater inclination (1/8) resists structural displacement more effectively and absorbs less kinetic energy. In this instance, the three-legged platform collapses due to the absorption of 27.30 MJ of energy. These results provide crucial insights for enhancing offshore platform resilience and safety in high-traffic maritime regions, with implications for design and collision mitigation strategies.

해양구조물 원통부재의 최종강도에 대한 손상의 영향 (Damage Effects on the Ultimate Strength of Offshore Tubular Members)

  • 백점기;신병천
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.577-577
    • /
    • 1989
  • In this paper, a detail evaluation of ultimate strength of offshore unstiffened tubular members with bending and local denting damage which are subjected to combined axial force and bending moment and to component load is presented through theoretical and experimental approaches. Based upon the results obtained here, the damage effect on the ultimate strength of tubular member under combined loads and component load is investigated.

해양구조물 원통부재의 최종강도에 대한 손상의 영향 (Damage Effects on the Ultimate Strength of Offshore Tubular Members)

  • 백점기;신병천
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.77-86
    • /
    • 1989
  • In this paper, a detail evaluation of ultimate strength of offshore unstiffened tubular members with bending and local denting damage which are subjected to combined axial force and bending moment and to component load is presented through theoretical and experimental approaches. Based upon the results obtained here, the damage effect on the ultimate strength of tubular member under combined loads and component load is investigated.

  • PDF

노후선박의 Condition Assessment Scheme의 개발 (Development of the Condition Assessment Scheme of Aged Ships)

  • 박영일;백점기;이제명;고재용
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 춘계학술대회 논문집
    • /
    • pp.77-82
    • /
    • 2004
  • 노후선박의 구조적 안전성을 확보하기 위해서는 부식이나 피로균열 및 기계적인 손상에 의하여 선체 구조 강도가 어떠한 영향을 받는지 충분히 검토하여 적절한 수리 보수 등 이에 대한 대책을 강구할 필요가 있다. 본 연구에서는 이러한 관점에서 부식, 피로균열, 기계적인 손상과 같은 노후 선박에 발생할 수 있는 여러 가지 손상이 선체강도에 미치는 영향을 이론적, 수치적, 실험적인 방법을 통하여 조사하고, 이를 통하여 선각거더의 소성붕괴강도 저하를 고려한 신뢰성 평가법 및 보수, 수리를 통한 인정수준 이상의 선각강도를 유지하게 하는 지침도 연구하였다.

  • PDF

스프링-보 모형을 이용한 해양구조물 원통부재의 충돌 해석 (Analysis of Offshore Tubulars Subjected to Collision Impacts Using a Spring-Beam Model)

  • 조상래;권종식
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.22-35
    • /
    • 1995
  • A simplified numerical procedure have proposed to trace the dynamic behaviour of offshore tubulars subjected to lateral collision impacts. The local denting and overall bending deformation of the struck tubular are represented by a non-linear spring and an elastic visco-plastic beam respectively. In this method a temporal finite difference method and a spacial finite element method are employed. Using this method various boundary conditions are able to considered and their effects on the extent of damage can be quantified. The extent of damage due to collision can be obtained as results of the dynamic analysis. The predictions using the proposed method have been correlated with existing test results and then the reliability of the procedure has been substantiated. The characteristics of the dynamic response of tubulars under lateral impacts are compared for simply supported roller and fixed end conditions and their effects on the extent of damage are specfied.

  • PDF

준정적하중(準靜的荷重)을 받는 해양구조물(海洋構造物)의 원통부재(圓筒部材)에 대한 손상예측(損傷豫測) (Damage Estimation for Offshore Tubular Members Under Quasi-Static Loading)

  • 백점기;신병천;김창렬
    • 대한조선학회지
    • /
    • 제26권4호
    • /
    • pp.81-93
    • /
    • 1989
  • 본(本) 논문(論文)에서는 충돌(衝突)이나 중량물(重量物) 낙하(落下)등에 의한 사고하중(事故荷重)을 받는 해양구조물(海洋構造物)의 원통부재(圓筒部材)에 대한 손상변형거동(損傷變形擧動)을 실용적(實用的)으로 추정(推定)할 수 있는 새로운 손상예측(損傷豫測) 모델을 제안(提案)한다. 본(本) 논문(論文)은 하중속도(荷重速度)가 비교적(比較的) 느리고 준정적(準靜的) 문제(問題)로서 다룰수 있는 경우만을 대상(對象)으로 하고 있다. 본연구(本硏究)에서 취급하는 원통부재(圓筒部材)는 양단단순(兩端單純) 지지(支持)되어 있고 축방향(軸方向)의 변위(變位)는 구속(拘束)되어 있으며, 하중(荷重)은 부재(部材)의 중앙위치(中央位置)에서 횡방향(橫方向)으로 작용(作用)한다고 가정(假定)한다. 지금까지의 연구성과(硏究成果) 및 본(本) 연구(硏究)에서 직접(直接) 수행(遂行)한 실험결과(實驗結果)를 바탕으로 사고하중작용시(事故荷重作用時)의 원통부재(圓筒部材)에 대한 손상변형거동(損傷變形擧動)을 상세(詳細)히 파악(把握)하고, 국부(局部) Dent 손상(損傷) 및 전체적(全體的)인 굽힘 처짐의 상관효과(相關效果)를 고려(考慮)한 하중-손상변형(荷重-損傷變形) 관계식(關係式)을 도출(導出)하였으며, 실제적(實際的)인 원통부재(圓筒部材)에 대한 실험결과(實驗結果)와 본연구(本硏究)에서 제안(提案)한 예측(豫測) 모델에 의한 추정결과(推定結果)는 잘 대응(對應)하고 있다는 것을 확인(確認)하였다. 특(特)히, 이 같은 하중상태하(荷重狀態下)에서의 실제부재(實際部材)의 손상변형거동(損傷變形擧動)에 대하여는 국부(局部) Dent 손상(損傷)과 전체적(全體的)인 굽힘처짐의 상관효과(相關效果)가 매우 크다는 것을 알았으며, 본예측(本豫測) 모델은 이들의 효과(效果)도 잘 나타내고 있다.

  • PDF

해양구조물 충돌의 간이 동적해석법 개발 (Development of a Simplified Dynamic Analysis Procedure for Offshore Collisions)

  • 조상래
    • 대한조선학회지
    • /
    • 제27권4호
    • /
    • pp.72-82
    • /
    • 1990
  • 해양구조물의 비보강원통 부재가 충돌로 인해 횡 충격하중을 받는 경우 비보강원통의 동적거동을 추적하고 그 결과로 발생되는 손상의 정도를 예측할 수 있는 간이 수치해석 방법을 제안하고자 한다. 이 방법에서는 국부적인 변형과 전체굽힘 변형을 별도로 자유도로 분리하여 2 자유도의 스프링-질량계로 치환하여 해석하게 된다. 변형속도를 비롯한 기타의 동적효과가 굽힘변형을 나타내는 스프링 상수값에 미치는 영향은 실험자료로부터 얻어진 수정계수를 도입하여 고려하였다. 제안된 해석방법을 사용하여 얻어진 손상정도의 값들은 실험결과와 비교적 잘 일치하고 있다.

  • PDF

Ultimate strength performance of tankers associated with industry corrosion addition practices

  • Kim, Do Kyun;Kim, Han Byul;Zhang, Xiaoming;Li, Chen Guang;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.507-528
    • /
    • 2014
  • In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSR-H) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures.

노후 함정 강재의 기계적 특성 평가 (Mechanical Properties Assessment of Steels Obtained from an Aged Naval Ship)

  • 박상현;장영식;이수민;조상래;전상수;황주영;백남기
    • 대한조선학회논문집
    • /
    • 제60권2호
    • /
    • pp.65-75
    • /
    • 2023
  • Ships operated at sea for a long time are subjected to various kinds of loads, which may cause various types of damage. Such damages will eventually reduce the strength of hull structures. Therefore, it is necessary to estimate and evaluate the residual strength and remaining fatigue life of aging ships in order to secure structural safety, establish a reasonable maintenance plan, and make a judgment of life extension. For this purpose, the corrosion damage and local denting damage should be measured, fatigue damage estimation should be performed, and material properties of aged steel should be identified. For this study, in order to investigate the mechanical properties of aged steel, steel plates were obtained from a naval ship that reached the end of her life span. The specimens were manufactured from the obtained steel plates, and static and dynamic tensile tests, fatigue tests, and metallographic tests were performed. The mechanical properties obtained from the aged steel plates were compared with those of new steel plates to quantify the aging effect on the mechanical properties of marine steel materials.