• Title/Summary/Keyword: local calibrations

Search Result 11, Processing Time 0.028 seconds

A NOTE ON LOCAL CALIBRATIONS OF ALMOST COMPLEX STRUCTURES

  • Kim, Hyeseon
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.384-390
    • /
    • 2022
  • In this paper, we study the obstruction on the jets of an almost complex structure J to the existence of a symplectic form ω such that J is compatible with ω. We describe some almost complex structures on ℝ4 and on ℝ6, respectively, that cannot be calibrated by any symplectic forms. In particular, these examples pertain to the model almost complex structure on ℝ4 in [3], and the simple model structure on ℝ6 in [7].

STAR FORMATION RATE CALIBRATIONS FOR WISE LUMINOSITIES

  • Yuan, F.T.;Takeuchi, T.T;Buat, V.;Burgarella, D.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.345-346
    • /
    • 2012
  • Starting from an infrared selected GALEX-SDSS-2MASS-AKARI sample of local star forming galaxies, we built mock samples from redshift 0 to 2.5 to investigate star formation rate (SFR) calibrations using WISE luminosities. We find W3 and W4 band fluxes can indicate SFRs with small scatters when the rest-frame wavelengths are longer than ${\sim}6{\mu}m$. When the wavelength becomes shorter, the observed luminosities are more tightly connected to the emission of old stellar populations than dust, therefore lose the reliability to trace the SFR. The current SFR calibrations are consistent with previous studies.

Analysis of mixed feeds and its components with NIRS - possibilities, problems and prospects

  • Tillmann, Peter;Horst, Hartmut;Danier, Juergen;Dieterle, Peter;Philipps, Petra
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1261-1261
    • /
    • 2001
  • Mixed feeds and their components are a very diverse matrix compared to other agricultural products worked on with NIRS classically. On a database of mixed feeds and their components (n=2.500) universal PLS calibrations and “local” calibrations were compared. The results from validation (n=600) show the potential of the calibrations and their limitations. Crude protein, crude fiber, crude fat, sugar and starch are predicted with SEPs of 0.6%, 1%, 0.3%, 1% and 1.5%, respectively. Ash content of 15% and more in several mixed feeds or components as well as rare components limit the use of NIRS for routine analyses.

  • PDF

Effect of Density on Water Content Reflectometer Measured Field Water Content in Pavement Subgrades (Water Content Reflectometer로 측정한 현장 노상토의 함수량에 대한 다짐도 영향 평가)

  • Park Seong-Wan;Lee Chi-Hun;Hwang Kyu-Young
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.115-127
    • /
    • 2006
  • The purpose of field monitoring system in KHC-Test Road is to provide the performance data for environmental loadings from pavement surface. Among them, water content reflectometer(WCR) are used for measuring the volumetric water content of pavement subgrades. However, WCRs are not well-calibrated based on the local field conditions. A need therefore exists for improving equations for predicting water content using the proper field and laboratory calibrations. Based on the study performed, calibrations based on various soil characteristics and density conditions are well fitted to the data from fields. So, it is recommended to use the suggested general calibration of WCR to the compacted subgrade soils in test road for predicting the volumetric water content.

  • PDF

Ship Detection by Satellite Data: Radiometric and Geometric Calibrations of RADARS AT Data (위성 데이터에 의한 선박 탐지: RADARSAT의 대기보정과 기하보정)

  • Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.1-7
    • /
    • 2004
  • RADARSAT is one of many possible data sources that can play an important role in marine surveillance including ship detection because radar sensors have the two primary advantages: all-weather and day or night imaging. However, atmospheric effects on SAR imaging can not be bypassed and any remote sensing image has various geometric distortions, In this study, radiometric and geometric calibrations for RADARSAT/SAT data are tried using SGX products georeferenced as level 1. Even comparison of the near vs. far range sections of the same images requires such calibration Radiometric calibration is performed by compensating for effects of local illuminated area and incidence angle on the local backscatter, Conversion method of the pixel DNs to beta nought and sigma nought is also investigated. Finally, automatic geometric calibration based on the 4 pixels from the header file is compared to a marine chart. The errors for latitude and longitude directions are 300m and 260m, respectively. It can be concluded that the error extent is acceptable for an application to open sea and can be calibrated using a ground control point.

  • PDF

A Development of an Insole Type Local Shear Measurement Transducer and Measurements of Local Plantar Shear Force During Gait (인솔형 국부 전단센서의 개발 및 보행 시 발바닥의 국부 전단력 측정)

  • Jeong Im Sook;Ahn Seung Chan;Yi Jin Bok;Kim Han Sung;Kim Young Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.213-221
    • /
    • 2005
  • An insole type local shear force measurement system was developed and local shear stresses in the foot were measured during level walking. The shear force transducer based on the magneto-resistive principle, was a rigid 3-layer circular disc. Sensor calibrations with a specially designed calibration device showed that it provided relatively linear sensor outputs. Shear transducers were mounted on the locations of four metatarsal heads and heel in the insole. Sensor outputs were amplified, decorded in the bluetooth transmission part and then transferred to PC. In order to evaluate the developed system, both shear and plantar pressure measurements, synchronized with the three-dimensional motion analysis system, were performed on twelve young healthy male subjects, walking at their comfortable speeds. The maximum peak pressure during gait was 5.00kPa/B.W at the heel. The time when large local shear stresses were acted correlated well with the time of fast COP movements. The anteroposterior shear was dominant near the COP trajectory, but the mediolateral shear was noted away from the COP trajectory. The vector sum of shear stresses revealed a strong correlation with COP movement velocity. The present study will be helpful to select the material and to design of foot orthoses and orthopedic shoes for diabetic neuropathy or Hansen disease.

Gaze Detection by Wearable Eye-Tracking and NIR LED-Based Head-Tracking Device Based on SVR

  • Cho, Chul Woo;Lee, Ji Woo;Shin, Kwang Yong;Lee, Eui Chul;Park, Kang Ryoung;Lee, Heekyung;Cha, Jihun
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.542-552
    • /
    • 2012
  • In this paper, a gaze estimation method is proposed for use with a large-sized display at a distance. Our research has the following four novelties: this is the first study on gaze-tracking for large-sized displays and large Z (viewing) distances; our gaze-tracking accuracy is not affected by head movements since the proposed method tracks the head by using a near infrared camera and an infrared light-emitting diode; the threshold for local binarization of the pupil area is adaptively determined by using a p-tile method based on circular edge detection irrespective of the eyelid or eyelash shadows; and accurate gaze position is calculated by using two support vector regressions without complicated calibrations for the camera, display, and user's eyes, in which the gaze positions and head movements are used as feature values. The root mean square error of gaze detection is calculated as $0.79^{\circ}$ for a 30-inch screen.

In Orbit Radiometric Calibration Tests of COMS MI Infrared Channels

  • Jin, Kyoung-Wook;Seo, Seok-Bae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.369-377
    • /
    • 2011
  • Since well-calibrated satellite data is critical for their applications, calibration and validation of COMS science data was one of the key activities during the IOT. COMS MI radiometric calibration process was divided into two phases according to the out-gassing of the sensor: calibrations of the visible (VI) and infrared (IR) channels. Different from the VIS calibration, the calibration steps for the IR channels followed additional processes to secure their radiometric performances. Primary calibration steps of the IR were scan mirror emissivity correction, midnight effect compensation, slope averaging and 1/f noise compensation after a nominal calibration. First, the scan mirror emissivity correction was conducted to compensate the variability of the scan mirror emissivity driven by the coating material on the scan mirror. Second, the midnight effect correction was performed to remove unreasonable high spikes of the slope values caused by the excessive radiative sources during the local midnight. After these steps, the residual (difference between the previous slope and the given slope) was filtered by a smoothing routine to eliminate the remnant random noises. The 1/f noise compensation was also carried out to filter out the lower frequency noises caused from the electronics in the Imager. With through calibration processes during the entire IOT period, the calibrated IR data showed excellent performances.

SEJONG OPEN CLUSTER SURVEY (SOS). 0. TARGET SELECTION AND DATA ANALYSIS

  • Sung, Hwankyung;Lim, Beomdu;Bessell, Michael S.;Kim, Jinyoung S.;Hur, Hyeonoh;Chun, Moo-Young;Park, Byeong-Gon
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.3
    • /
    • pp.103-123
    • /
    • 2013
  • Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We initiate the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBV I system. To achieve our main goal, we pay much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - MV relations, Sp - $T_{eff}$ relations, Sp - color relations, and $T_{eff}$ - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.

Nanoscale quantitative mechanical mapping of poly dimethylsiloxane in a time dependent fashion

  • Zhang, Shuting;Ji, Yu;Ma, Chunhua
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.253-261
    • /
    • 2021
  • Polydimethylsiloxane (PDMS) is one of the most widely adopted silicon-based organic polymeric elastomers. Elastomeric nanostructures are normally required to accomplish an explicit mechanical role and correspondingly their mechanical properties are crucial to affect device and material performance. Despite its wide application, the mechanical properties of PDMS are yet fully understood. In particular, the time dependent mechanical response of PDMS has not been fully elucidated. Here, utilizing state-of-the-art PeakForce Quantitative Nanomechanical Mapping (PFQNM) together with Force Volume (FV) and Fast Force Volume (FFV), the elastic moduli of PDMS samples were assessed in a time-dependent fashion. Specifically, the acquisition frequency was discretely changed four orders of magnitude from 0.1 Hz up to 2 kHz. Careful calibrations were done. Force data were fitted with a linearized DMT contact mechanics model considering surface adhesion force. Increased Young's modulus was discovered with increasing acquisition frequency. It was measured 878 ± 274 kPa at 0.1 Hz and increased to 4586 ± 758 kPa at 2 kHz. The robust local probing of mechanical measurement as well as unprecedented high-resolution topography imaging open new avenues for quantitative nanomechanical mapping of soft polymers, and can be extended to soft biological systems.