• Title/Summary/Keyword: local best

Search Result 860, Processing Time 0.039 seconds

HS-PSO Hybrid Optimization Algorithm for HS Performance Improvement (HS 성능 향상을 위한 HS-PSO 하이브리드 최적화 알고리즘)

  • Tae-Bong Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.203-209
    • /
    • 2023
  • Harmony search(HS) does not use the evaluation of individual harmony when referring to HM when constructing a new harmony, but particle swarm optimization(PSO), on the contrary, uses the evaluation value of individual particles and the evaluation value of the population to find a solution. However, in this study, we tried to improve the performance of the algorithm by finding and identifying similarities between HS and PSO and applying the particle improvement process of PSO to HS. To apply the PSO algorithm, the local best of individual particles and the global best of the swam are required. In this study, the process of HS improving the worst harmony in harmony memory(HM) was viewed as a process very similar to that of PSO. Therefore, the worst harmony of HM was regarded as the local best of a particle, and the best harmony was regarded as the global best of swam. In this way, the performance of the HS was improved by introducing the particle improvement process of the PSO into the HS harmony improvement process. The results of this study were confirmed by comparing examples of optimization values for various functions. As a result, it was found that the suggested HS-PSO was much better than the existing HS in terms of accuracy and consistency.

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.

Lane-Curvature Method : A New Method for Local Obstacle Avoidance (차선-곡률 방법 : 새로운 지역 장애물 회피 방법)

  • Ko, Nak-Yong;Lee, Sang-Kee
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.313-320
    • /
    • 1999
  • The Lane-Curvature Method(LCM) presented in this paper is a new local obstacle avoidance method for indoor mobile robots. The method combines Curvature-Velocith Method(CVM) with a new directional method called the Lane Method. The Lane Method divides the environment into lanes taking the information on obstacles and desired heading of the robot into account ; then it chooses the best lane to follow to optimize travel along a desired heading. A local heading is then calculated for entering and following the best lane, and CVM uses this heading to determine the optimal translational and rotational velocity space methods, LCM yields safe collision-free motion as well as smooth motion taking the dynamics of the robot Xavier, show the efficiency of the proposed method.

  • PDF

Using Non-Local Features to Improve Named Entity Recognition Recall

  • Mao, Xinnian;Xu, Wei;Dong, Yuan;He, Saike;Wang, Haila
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.303-310
    • /
    • 2007
  • Named Entity Recognition (NER) is always limited by its lower recall resulting from the asymmetric data distribution where the NONE class dominates the entity classes. This paper presents an approach that exploits non-local information to improve the NER recall. Several kinds of non-local features encoding entity token occurrence, entity boundary and entity class are explored under Conditional Random Fields (CRFs) framework. Experiments on SIGHAN 2006 MSRA (CityU) corpus indicate that non-local features can effectively enhance the recall of the state-of-the-art NER systems. Incorporating the non-local features into the NER systems using local features alone, our best system achieves a 23.56% (25.26%) relative error reduction on the recall and 17.10% (11.36%) relative error reduction on the F1 score; the improved F1 score 89.38% (90.09%) is significantly superior to the best NER system with F1 of 86.51% (89.03%) participated in the closed track.

  • PDF

A Lane Based Obstacle Avoidance Method for Mobile Robot Navigation

  • Ko, Nak-Yong;Reid G. Simmons;Kim, Koung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1693-1703
    • /
    • 2003
  • This paper presents a new local obstacle avoidance method for indoor mobile robots. The method uses a new directional approach called the Lane Method. The Lane Method is combined with a velocity space method i.e., the Curvature-Velocity Method to form the Lane-Curvature Method (LCM). The Lane Method divides the work area into lanes, and then chooses the best lane to follow to optimize travel along a desired goal heading. A local heading is then calculated for entering and following the best lane, and CVM uses this local heading to determine the optimal translational and rotational velocities, considering some physical limitations and environmental constraint. By combining both the directional and velocity space methods, LCM yields safe collision-free motion as well as smooth motion taking the physical limitations of the robot motion into account.

An Integer Programming-based Local Search for the Multiple-choice Multidimensional Knapsack Problem

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.1-9
    • /
    • 2018
  • The multiple-choice multidimensional knapsack problem (MMKP) is a variant of the well known 0-1 knapsack problem, which is known as an NP-hard problem. This paper proposes a method for solving the MMKP using the integer programming-based local search (IPbLS). IPbLS is a kind of a local search and uses integer programming to generate a neighbor solution. The most important thing in IPbLS is the way to select items participating in the next integer programming step. In this paper, three ways to select items are introduced and compared on 37 well-known benchmark data instances. Experimental results shows that the method using linear programming is the best for the MMKP. It also shows that the proposed method can find the equal or better solutions than the best known solutions in 23 data instances, and the new better solutions in 13 instances.

Spatial Contrast Enhancement using Local Statistics based on Genetic Algorithm

  • Choo, MoonWon
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.89-92
    • /
    • 2017
  • This paper investigates simple gray level image enhancement technique based on Genetic Algorithms and Local Statistics. The task of GA is to adapt the parameters of local sliding masks over pixels, finding out the best parameters preserving the brightness and possibly preventing the creation of intensity artifacts in the local area of images. The algorithm is controlled by GA as to enhance the contrast and details in the images automatically according to an object fitness criterion. Results obtained in terms of subjective and objective evaluations, show the plausibility of the method suggested here.

Bus Reconfiguration Strategy Based on Local Minimum Tree Search for the Event Processing of Automated Distribution Substation (자동화된 변전소의 이벤트 발생시 준최적 탐색법에 기반한 모선 재구성 전략의 개발)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.10
    • /
    • pp.565-572
    • /
    • 2004
  • This paper proposes an expert system which can enhance the accuracy of real-time bus reconfiguration strategy by adopting local minimum tree search method and minimize the spreading effect of the fault by considering totally the operating condition when a main transformer fault occurs in the automated substation. The local minimum tree search method to expand the best-first search method. This method has an advantage which can improve the performance of solution within the limits of the real-time condition. The inference strategy proposed expert system consists of two stages. The first stage determines the switching candidate set by searching possible switching candidates starting from the main transformer or busbar related to the event. And, second stage determines the rational real-time bus reconfiguration strategy based on heuristic rules for the obtained switching candidate set. Also, this paper studies the generalized distribution substation modelling using graph theory and a substation database is designed based on the study result. The inference engine of the expert system and the substation database is implemented in MFC function of Visual C++. Finally, the performance and effectiveness of the proposed expert system is verified by comparing the best-first search solution and local minimum tree search solution based on diversity event simulations for typical distribution substation.

Determination of the Optimal Design Parameters for Search Task with VDT Screen Written in Korean (탐색작업에서 한글 VDT를 화면의 최적설계 모수의 결정)

  • 황우상;이동춘
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.42
    • /
    • pp.39-47
    • /
    • 1997
  • There are four parameters (i.e. overall density, local density, grouping, layout complexity) to consider in designing screen of a visual display terminal. Among these, only the optimum level of overall density is known to be about 25~30% by some studies. Therefore, the present experiment is conducted to define the optimum levels of the other parameters to achieve the user's best performance in visual search task. The results are as follows; (1) The function related to the levels of local density and user's search times is shown to be U -shaped. When the level of local density is about 40%, the search time is shorter than those of any other levels. (2) In the experiment of grouping, user's performance is best when the number of group is 5, and the size of group does not exceed visual angle $5^{\circ}$ (0,088rad). (3) The user performance is improved as the layout becomes less complex.

  • PDF

Stochastic structures of world's death counts after World War II

  • Lee, Jae J.
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.353-371
    • /
    • 2022
  • This paper analyzes death counts after World War II of several countries to identify and to compare their stochastic structures. The stochastic structures that this paper entertains are three structural time series models, a local level with a random walk model, a fixed local linear trend model and a local linear trend model. The structural time series models assume that a time series can be formulated directly with the unobserved components such as trend, slope, seasonal, cycle and daily effect. Random effect of each unobserved component is characterized by its own stochastic structure and a distribution of its irregular component. The structural time series models use the Kalman filter to estimate unknown parameters of a stochastic model, to predict future data, and to do filtering data. This paper identifies the best-fitted stochastic model for three types of death counts (Female, Male and Total) of each country. Two diagnostic procedures are used to check the validity of fitted models. Three criteria, AIC, BIC and SSPE are used to select the best-fitted valid stochastic model for each type of death counts of each country.