• Title/Summary/Keyword: local bending

Search Result 315, Processing Time 0.024 seconds

Finite Element Based Stress Concentration Factors for Pipes with Local Wall Thinning (유한요소해석을 이용한 국부 감육배관에 대한 응력집중계수 제시)

  • Son, Beom-Goo;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1014-1020
    • /
    • 2004
  • The present work complies the elastic stress concentration factor for a pipe with local wall thinning, based on detailed three-dimensional elastic FE analysis. To cover practically interesting cases, a wide range of pipe and defect geometries are considered, and both internal pressure and global bending are considered. Resulting values of stress concentration factors are tabulated for practical use, and the effect of relevant parameters such as pipe and defect geometries on stress concentration factors are discussed. The present results would provide valuable information to estimate fatigue damage of the pipe with local wall thinning under high cycle fatigue.

Effects of Thinning Length on Failure Mode of Local Wall Thinned Pipe (감육 배관의 손상모드에 미치는 감육부 길이의 영향)

  • Kim, Jin-Weon;Park, Chi-Yong;Lee, Sung-Ho;Kang, Tai-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.357-362
    • /
    • 2001
  • The pipe fracture tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, in order to understand failure behavior of thinned pipe. Pipe specimens were subjected to monotonic bending moment, using 4-points loading system, under internally pressurized condition. From the results of experiment, the failure mode, load carrying capacity, and deformability of local wall thinning pipe were investigated. Failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with length of thinned area was determined by stress type appled to thinning region and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

  • PDF

Sound Insulation Design of the Corrugated Steel Panel Considering Local Resonance (국부 공진을 고려한 주름강판의 차음 설계)

  • Kim, Seock-Hyun;Lee, Hyun-Woo;Kim, Jung-Tae;Kim, Jae-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.672-676
    • /
    • 2010
  • In a railway vehicle, corrugated steel panel is widely used for the floor structure because of its high bending stiffness and light weight. However, this panel shows lower sound insulation performance than that of the flat plate with the same weight. Especially, in a particular frequency region, transmission loss(TL) rapidly decreases and it results in the deterioration of sound insulation performance of the overall floor structure. This study identifies that the severe decrease in TL is caused from the local resonance of the periodic corrugated structure. TL decrease by local resonance is investigated by experiment and finite element analysis. Finally, design modification of the corrugation is proposed to improve TL and the effect is verified by experiment.

The Structural Behavior of Strong Axis Connections by Type of Weak Axis Connection - In Case of Loading Gravity Load - (약축 접합부 형식에 따른 강축 접합부의 구조적 거동 - 연직하중이 작용하는 경우 -)

  • Kim, Sang Seup;Lee, Do Hyung;Ham, Jeong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.275-284
    • /
    • 2004
  • The behavior of the connection for beam-to-column weak axis connection and its details should be identified. Thus, each element is considered a panel zone, and the horizontal stiffener's presence or absence and position in bracket-type welding connection are used as variables to compare the behavior of strong axis connection and weak axis connection. In this study, the strength of connection is calculated by substituting the simple beam-strengthened vertical stiffeners for connection in the presence of horizontal stiffeners. In the absence of horizontal stiffeners, the strength of connection can be calculated using local flange bending strength considering local web yielding strength, web crippling, and web buckling strength. The results of the theoretical analysis and experiments are compared.

Rocking Stiffness of Electrical Cabinet for In-Cabinet Response Spectrum (캐비닛내부응답스펙트럼을 위한 전기캐비닛 전도강성)

  • Chung, Yon Ha;Hong, Kee-Jeung;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Electrical instruments and devices contained in cabinets for controlling nuclear power plants require seismic qualification; likewise, in-cabinet response spectrum (ICRS) is necessary. Gupta et al. (1999) suggested the Ritz method, where rocking, frame bending, and plate bending behaviors of cabinets are considered, as a method for determining ICRS. This research proposes a method to determine the rocking stiffness of cabinets, which represents its rocking behavior. The cabinet is fixed on mounting frames and is connected to the base concrete by anchors. When horizontal excitation is applied to the cabinet, the mounting frames at anchors are locally deformed, the mounting frames are bent, and then rocking in the cabinet becomes evident. A method to determine equivalent vertical spring stiffness representing the local deformation of the mounting frames at anchors is then proposed. Subsequently, the rocking stiffness of this mounting frame is calculated upon assumption of the mounting frame as an indeterminate beam.

An Experimental Study on the Impact Energy Absorption Mechanism of CFRP/Al Compound Square Tube (CFRP/Al 혼성 사각부재의 충격에너지 흡수 메카니즘의 실험적 고찰)

  • Hwang, Woo Chae;Cha, Cheon Seok;Yang, Yong Jun;Jung, Jong An;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.12-17
    • /
    • 2015
  • In this study, the collapse characteristic of CFRP/Al compound square tube was investigated experimentally. The conclusions are as follows; The impact collapse characteristic of CFRP/Al compound square tube was found to be the most superior stacking conditions $[90^{\circ}]_8$. It showed that a very stable collapse mode was crushing. In the member with $[0_2{^{\circ}}/90_2{^{\circ}}]_s$ and $[90_2{^{\circ}}/0_2{^{\circ}}]_s$, stacking conditions, $0^{\circ}$ fibers were splayed to the external by laminar bending, while the $90^{\circ}$ fibers were held between the folds of the aluminum member by laminar bending, local buckling and transverse crack. In the member with $[45_2{^{\circ}}/45_2{^{\circ}}]_s$ stacking conditions, fibers were held between the folds of the aluminum member by local buckling and transverse crack.

Parametric study on eccentrically-loaded partially encased composite columns under major axis bending

  • Begum, Mahbuba;Driver, Robert G.;Elwi, Alaa E.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1299-1319
    • /
    • 2015
  • This paper presents a detailed parametric study, conducted using finite element tools to cover a range of several geometric and material parameters, on the behaviour of thin-walled partially encased composite (PEC) columns. The PEC columns studied herein are composed of thin-walled built-up H-shaped steel sections with concrete infill cast between the flanges. Transverse links are provided between the opposing flanges to improve resistance to local buckling. The parametric study is confined to eccentrically-loaded columns subjected to major axis bending only. The parameters that were varied include the overall column slenderness ratio (L/d), load eccentricity ratio (e/d), link spacing-to-depth ratio (s/d), flange plate slenderness ratio (b/t) and concrete compressive strength ($f_{cu}$). The overall column slenderness ratio was chosen to be the primary variable with values of 5, 10 and 15. Other parameters were varied within each case of L/d ratio. The effects of the selected parameters on the behaviour of PEC columns were studied with respect to the failure mode, peak axial load, axial load versus average axial strain response, axial load versus lateral displacement response, moment versus lateral displacement behaviour and the axial load-moment interaction diagram. The results of the parametric study are presented in the paper and the influences of each of the parameters investigated are discussed.

Study on the Semi-Analytical Ice Load Calculation Methods for the Ice-Breaking Simulation (쇄빙시뮬레이션을 위한 반해석적 빙하중 계산법 고찰)

  • Kim, Jeong-Hwan;Jang, Beom-Seon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.353-364
    • /
    • 2020
  • This paper presents the semi-analytical ice load calculation methods that are useful to simulate the ice-breaking process. Since the semi-analytical methods rely on the previously developed closed form equations or numerical analysis results, the user's exact understanding for the equations must be supported in order to use the methods properly. In this study, various failure modes of ice such as local crushing, in-plane splitting failure, out-of-plane bending failure and radial or circumferential cracking with rotation of the broken ice floe are considered. Based on the presented methods, the fracture modes were evaluated according to the size and thickness of ice. In addition, time series analysis for the ice-breaking process was performed on several ice conditions and the results were analyzed.

A field investigation on an expansive soil slope supported by a sheet-pile retaining structure

  • Zhen Zhang;Yu-Liang Lin;Hong-Ri Zhang;Bin He;Guo-Lin Yang;Yong-Fu Xu
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.315-324
    • /
    • 2024
  • An expansive soil in 4970 special railway line in Dangyang City, China, has encountered a series of landslides due to the expansion characteristics of expansive soil over the past 50 years. Thereafter, a sheet-pile retaining structure was adopted to fortify the expansive soil slope after a comprehensive discussion. In order to evaluate the efficacy of engineering measure of sheet-pile retaining structure, the field test was carried out to investigate the lateral pressure and pile bending moment subjected to construction and service conditions, and the local daily rainfall was also recorded. It took more than 500 days to carry out the field investigation, and the general change laws of lateral pressure and pile bending moment versus local daily rainfall were obtained. The results show that the effect of rainfall on the moisture content of backfill behind the wall decreases with depth. The performance of sheet-pile retaining structure is sensitive to the intensity of rainfall. The arching effect is reduced significantly by employing a series of sheet behind piles. The lateral pressure behind the sheet exhibits a single-peak distribution. The turning point of the horizontal swelling pressure distribution is correlated with the self-weight pressure distribution of soil and the variation of soil moisture content. The measured pile bending moment is approximately 44% of the ultimate pile capacity, which indicates that the sheet-pile retaining structure is in a stable service condition with enough safety reserve.

Effect of Local Wall Thinned Location due to Erosion-Corrosion on Fracture Behavior of Pipes (침식-부식에 의해 감육된 배관의 파손거동에 미치는 감육위치의 영향)

  • Ahn, Seok-Hwan;Seok, Kum-Cheol;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.51-58
    • /
    • 2007
  • This study on the effects of local wall-thinned location on the fracture behavior of pipes was carried out, and the results were compared with the analytical results. Local wall-thinning for the bending test was machined with various sizes on the outside of pipes, in order to simulate the metal loss, due to erosion/corrosion. In addition, we had carried out FE analysis for the pipes with local wall thinning on the inside, and its results were comparatively studied with that of the outside. Three-dimensional elasto-plastic analyses were able to accurately simulate fracture behaviors of inner or outer wall thinning. Fracture types, obtained from the experiments and analyses, could be classified into ovalization, local buckling and crack initiation, depending on the thinned length and thinned ratio. Based on the results, the fracture behaviors of pipes with the outer wall thinning can be applied to estimate the fracture behaviors of pipes with the inner wall thinning.