• Title/Summary/Keyword: local bending

Search Result 315, Processing Time 0.031 seconds

Fracture Behavior Evaluation of Wall Thinned pipes by Finite Element Analysis (감육배관의 요한요소해석에 의한 파괴거동 평가)

  • AHN SEOK-HWAN;NAM KI-Woo;KIM JIN-WOOK;LEE SOO-SIG;YOON JA-MUN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.320-325
    • /
    • 2004
  • Fracture behaviors and strength of pipes with local wall thinning are very important Jar the integrity of energy plants. In pipes of energy plants, sometimes, the local wall thinning may result from severe erosion-corrosion damage. Recently, the effects of local wall thinning on strength and fracture behaviors of piping system have been well studied. In this paper, the elasto-plastic analysis is performed by FE code ANSIS. We evaluated the failure mode, fracture strength and fracture behavior from FE analysis.

  • PDF

Stress Analysis of Cold-Formed Steel Beams Considering Local Buckling Effects (국부좌굴을 고려한 냉간성형 ㄷ 형강보의 응력해석)

  • Jeon, Jae Man;Hyun, Ja Young;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.51-60
    • /
    • 2004
  • The stress analysis of cold-formed channel section steel beams under transverse load was conducted. The local buckling effect was included in the analysis using effective area concept. The proposed analytical model is capable of predicting accurate normal stress in the beam due to various behaviors including biaxial bending and warping. It was found to be appropriate for predicting stresses as well as deflection in the beam. A finite element model was developed to solve the analytical model.

Impact Analysis of a plate structures Employing Hertzian Contact Theory (Hertz 접촉 이론을 이용한 평판 구조물의 충돌 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.383-388
    • /
    • 2008
  • A modeling method for the impact analysis of plate structures employing Hertzian contact theory is presented in this paper. Since local deformation as well as bending deflection of the plate occurs due to the collision, it has to be considered for the impact analysis. When the coefficient of restitution is employed for the impact analysis, the local deformation is not considered. For more accurate and reliable impact analysis, however, the local deformation should be considered. The effects of the location of collision and the collision mass on the impact duration time and the contact force magnitude are investigated through numerical studies employing Hertzian contact theory.

  • PDF

Estimation of Ice Load on Bow of a Icebreaking Research Vessel (쇄빙 과학조사선 선수부에 작용하는 빙하중 추정)

  • Rim, Chae-Whan;Lee, Tak-Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.509-516
    • /
    • 2007
  • Ice load acting on a icebreaking research vessel is estimated. Existing measured ice loads are used to get the global load and the local load. The global load is for analyzing the bending behavior of the vessel during ice breaking operation mode and the local load for estimating the bow structural behavior. In the paper, the global load is predicted using the data from analysis of ship motion during ice breaking. And the local load is predicted using the data from strain gage attached to bow frames.

Nonlocal elasticity theory for bending and free vibration analysis of nano plates (비국소 탄성 이론을 이용한 나노 판의 휨 및 자유진동해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3207-3215
    • /
    • 2012
  • In this paper, we study the bending and free vibration analysis of nano plate, using a nonlocal elasticity theory of Eringen with a third-order shear deformation theory. This theory has ability to capture the both small scale effects and quadratic variation of shear strain and consequently shear stress through the plate thickness. Analytical solutions of bending and vibration of a laminated composite nano plate are presented using this theory to illustrate the effect of nonlocal theory on deflection of the nano plates. The relations between nonlocal third-order and local theories are discussed by numerical results. Further, effects of (i) nonlocal parameters, (ii) laminate schemes, (iii) directions of the fiber angle and (iv) number of layers on nondimensional deflections are investigated. In order to validate the present solutions, the reference solutions are used and discussed. The results of anisotropic nano plates using the nonlocal theory may be the benchmark test for the bending analysis.

Failure and Deformation Analyses of 3-ply Mg/Al/STS Clad-Metalin Bending (굽힘시험시의 Mg/Al/STS 3층 클래드재의 변형 및 파단특성 분석)

  • Kim, In-Kyu;Song, Jun-Young;Hwan, Oh-Ki;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.345-351
    • /
    • 2012
  • A three-point bending test was performed on roll-bonded Mg/Al/STS clad-metal plates under two different testing conditions (Mg layer in tension, or STS in tension) and their mechanical response and fracture behavior were investigated. Bending strength was found to be greater under the condition of Mg layer in tension. Heat treatment at $200^{\circ}C$ increased the bending formability, suggesting the interfacial strength increased at $200^{\circ}C$. Under the condition of Mg in tension, the clad heat-treated at $300^{\circ}C$ and $400^{\circ}C$ fractured in two steps, with the first step associated with the interfacial fracture between Mg and Al, and the second the fracture of the Mg layer. STS/Al layers were found to be bent without complete fracture. Under the condition of STS in tension, the clad heat-treated at $300^{\circ}C$ and $400^{\circ}C$ exhibited a very small load drop at the displacement, which is similar to that of the first load drop associated with the interfacial fracture under the condition of Mg in tension. In this case, no interfacial cracks were found and the complete cut-through fracture of clad was observed at low temperature heat treatment conditions, suggesting excellent interfacial strength. When the heat treatment temperature was higher than $300^{\circ}C$, interfacial cracks were observed. The local stress condition and the position of the interface with respect to the surface were found to have a great influence on the fracture behaviors of clad metals.

A New Proposal for the Allowable Local Thickness of Straight Pipes in ASME Code Case N-597-2 (ASME 코드 케이스 N-597-2의 직관 국부허용두께의 새로운 제안)

  • Park, Jai-Hak;Shin, Kyu-In;Park, Chi-Yong;Lee, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.13-18
    • /
    • 2007
  • Structural integrity assessment of thin-walled pipes and pipe items has become one of the major issues in the nuclear power plant. ASME Section XI Code Case N-597-2 provides a criterion for acceptance of the pipes. But the code case has several limitations for application and sometimes gives too conservative or non-conservative results. So it is necessary to understand fully the technical bases of the code case. In the code case N-597, the allowable local thicknesses of thinned straight pipes are given for three different cases. Because of the different technical base, each case gives different thickness values and sometimes gives contradictory values. In this paper attempts were made in order to propose a unified rule for the allowable local thickness and in order to remove or relax the restrictions on the application of the code case. For this purpose elastic stress analyses were made using the finite element method and the stress results were examined. Based on the obtained bending stress results, a very simple procedure was proposed to obtain the consistent allowable local thickness for the thinned straight pipes.

The Structure Integrity Assessment of the Wall Thinned Elbow Considering In/Out-Plane Bending (열림·닫힘 방향 하중이 고려된 두께 감소된 엘보우의 건전성평가)

  • Jang, Ungburm;Shin, Kyuin;Lee, Sungho;Kuan, Changhee
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Local wall thinning elbow due to the water flow is one of the main degradation phenomenon in carbon steel pipe of plant system. The API579 code of FFS (fitness for service) used in the chemical plant gives a guideline to protect local wall thin problem in a straight pipe, but it does not include an elbow. In this study, the locally wall thinned elbow, which is considered an extrados or intrados wall thinned elbow, was carried out considering in-plane or out-plane bending using FEM (finite element method) analysis, and some of results were also compared with the experimental data. The results could give the structure integrity assessment to protect the local wall thinned elbow.

An Experimental Study on Failure Behavior of TP316 Stainless Steel Pipe with Local Wall Thinning and Cracking (국부 감육과 균열이 발생한 TP316 스테인리스강 배관의 파괴거동에 관한 실험적 연구)

  • Cheung, Jin Hwan;Kim, In Tae;Choi, Seock Jin;Choi, Hyung Suk;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.647-657
    • /
    • 2012
  • Although nuclear power plant piping system is designed conforming to design specifications, the piping systems are deteriorated with increase in service life. In this study, monotonic and cyclic loading tests were carried out on TP316 stainless steel pipe specimens, and the effect of local wall thinning and cracking on failure behavior was investigated. In the tests, 0%, 35% and 75% wall thinning and cracking of initial thickness were artificially introduced to inside elbow and straight pipe specimens, and internal pressures of 20MPa were applied to simulate real operation condition. From the test results, the effect of local wall thinning and cracking on failure mode, ultimate load, number of cycle and strain energy was presented, and maximum bending moment was compared with allowable bending moment calculated by ASME code.

Experimental and numerical analyses on axial cyclic behavior of H-section aluminium alloy members

  • Wu, Jinzhi;Zheng, Jianhua;Sun, Guojun;Chang, Xinquan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.11-28
    • /
    • 2022
  • This paper considers the combination of cyclic and axial loads to investigate the hysteretic performance of H-section 6061-T6 aluminum alloy members. The hysteretic performance of aluminum alloy members is the basis for the seismic performance of aluminum alloy structures. Despite the prevalence of aluminum alloy reticulated shells structures worldwide, research into the seismic performance of aluminum alloy structures remains inadequate. To address this deficiency, we design and conduct cyclic axial load testing of three H-section members based on a reliable testing system. The influence of slenderness ratios and bending direction on the failure form, bearing capacity, and stiffness degradation of each member are analyzed. The experiment results show that overall buckling dominates the failure mechanism of all test members before local buckling occurs. As the load increases after overall buckling, the plasticity of the member develops, finally leading to local buckling and fracture failure. The results illustrate that the plasticity development of the local buckling position is the main reason for the stiffness degradation and failure of the member. Additionally, with the increase of the slenderness ratio, the energy-dissipation capacity and stiffness of the member decrease significantly. Simultaneously, a finite element model based on the Chaboche hybrid strengthening model is established according to the experiment, and the rationality of the constitutive model and validity of the finite element simulation method are verified. The parameter analysis of twenty-four members with different sections, slenderness ratios, bending directions, and boundary conditions are also carried out. Results show that the section size and boundary condition of the member have a significant influence on stiffness degradation and energy dissipation capacity. Based on the above, the appropriate material constitutive relationship and analysis method of H-section aluminum alloy members under cyclic loading are determined, providing a reference for the seismic design of aluminum alloy structures.