• Title/Summary/Keyword: loam

Search Result 983, Processing Time 0.026 seconds

Effects of Several Soil Composites and Fertilizers to Plant Growing on the Artificial Planting Ground (인공식재지반의 토양배합 및 비료종류에 따른 초본식물의 생육효과)

  • Lee, Eun-Yeob;Moon, Seok-Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • To find pertinent soil type and maintenance method for artificial planting ground, the effects of soil compositions{sandy loam(S), vermiculite(V), sandy loam+vermiculite+sand(SVS), sandy loam+ carbonized rice husk+sand(SCS), sandy loam+humus sawdust+sand(SHS)}, and fertilizers (organic, chemical) on plant(kentuckyblue grass) growth were measured and compared from the field experiment. The results are summarized as follows 1. the highest germination rate is found from "vermiculite(V)" and the lowest from "sandy loam(S)" among tested 5 soil compositions. 2. "sandy loam+vermiculite+sand(SVS)" composition shows the highest plant height growth effect (5cm growth during tested 3 months) comparing to other 4 compositions. 3. "sandy loam+vermiculite+sand(SYS)" composition shows the highest ground covering rate after first two months, but it concede its order to "sandy loam+humus sawdust+sand(SHS)" composition after next one month growing. 4. the effects of fertilizers are follows 1) Among the blocks where no fertilizer was tried, the predominant height growth was obvious in "sandy loam+carbonized rice husk+sand(SCS)" and "sandy loam+humus sawdust+sand(SHS)" composition. 2) Among the blocks where chemical fertilizer was tried, relatively positive results were found from "vermiculite(V)" and "sandy loam+vermiculite+sand(SYS)" blocks on germination and growth rate. But on the ground coverage ratio, the effect of "sandy loam+carbonized rice husk+sand(SCS)" composite precede that of those 2 composites. 3) Among the blocks where organic fertilizer was tried, "sandy loam+humus sawdust+sand(SHS)" and "vermiculite(V)" blocks show relatively high ground coverage rate, growth rate than others. 4) When compositional differences were not considered, the block where organic fertilizer was tried shows most positive effects on all 3 measurements-germination ratio, height growth and ground covering.

  • PDF

Heat Transfer Model for Soil Irradiated by Infrared (적외선 조사된 토양에 대한 열전달 모델)

  • 강화석;이귀현;강위수;오재헌
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.449-455
    • /
    • 1996
  • The temperature distributions at various soil depths were predicted by heat transfer model during and after infrared irradiation on sand loam or loam soil. At each soil depth, predicted and measured temperature distributions were compared with using the mean relative percentage deviation and standard error. The mean relative percentage deviation was less than 10% between predicted and measured temperature distributions at each soil depth. Thus, it was concluded that the temperature distribution at each soil depth could be predicted satisfactorily by heat transfer model. Also, it is expected that these predicted temperature distributions can be used as basic information for determining the working speed of weeder and the size when the real weeder is constructed.

  • PDF

Experimental Study on the Crop Cultivation Using Dredged Soil (준설토를 이용한 작물재배 시험연구)

  • 손재권;최진규;구자웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.159-170
    • /
    • 1998
  • This study was initiated to investigate the applicability of the dredged soil from agricultural reservoirs on the crop cultivation. Four reservoirs were selected for this experiment, and properties of the dredged soils were analyzed physically and chemically. Soil textures were sandy loam(SL), silty loam(SiL), gravelly loam(GL), graveHy silty loam(GSiL), respectively. General chemical components, organic matter contents, main cations, heavy metals, etc. showed no adverse effects on crop growth. Tomato, cucumber, radish, Chinese cabbage were cultivated during 8 months period, in the soil treated with fertilizer and compost(Tmt.1), fertilizer(Tmt.2), compost(Tmt.3) and none (Tmt.4). Data for plant height, root zone depth and crop yield were collected and analyzed, and the yield for most crops showed increase as Tmt.1 >Tmt.2>Tmt.3>Tmt.4 by fertilizing methods, and as GL>GSiL>SL>SiL by soil textures. From the results, the crop cultivation using dredged soil was considered to be effective, due to its soil texture, organic matter content and fertilization.

  • PDF

Field experiment on the harrow-water requirement (써레질 용수에 관한 포장실험)

  • 김태철;안병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.1
    • /
    • pp.71-76
    • /
    • 1985
  • The objectives of this field experiment was to determine and recommend the water requirement for harrow considering the factors of soil class and soil moisture status. Experiment was conducted at the -paddy field of the Office of Rural Development in Chungnam Province. The results of experiment were summarized as follows: 1. Continuous drought day of 10-yr return period in transplanting season was about 25 days and the water content ratios at that point were approximately 20% in clayey-loam soil and 12% in sandy-loam soil irrelevantly to the soil-depth. 2. It was recommended that harrow-water requirement for standard design were approximately 9Omm in clayey-loam soil, 110mm in loamy soil and l3Omm in sandy-loam soil.

  • PDF

Soil Characteristics and Soil Salinity Changes in the Reclaimed Tideland of Korea (간척지 토양특성과 토양염류도 변화 개관)

  • Lee, Seung-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.14-19
    • /
    • 2009
  • To obtain the basic data on reclaimed tideland soils, 90 soil samples were collected from 9 tideland reclamation project areas in Korea. The soils consisted of clay (2.0 to 35.0 percents), silt (2.0 to 80.0 percents), and sand (8.0 to 95.0 percents), and were dominantly classified sandy loam and silty loam. The soils had pH of 4.5 to 9.1, organic matter of 0.50 to $19.20g\;kg^{-1}$, total nitrogen of 4 to $1,159mg\;kg^{-1}$, and avaliable phosphorus (as $P2_O_5$) of 3.5 to $147.7mg\;kg^{-1}$. The electrical conductivity in soil saturation-paste extracts (ECe) ranged between $0.62dS\;m^{-1}$ and $31.60dS\;m^{-1}$ and the concentrations of sodium and magnesium ions were higher than those of potassium and calcium ions. The magnitude of the ECe was as low as that of normal level in Nam-Po, Pu-Sa, and Kye-Hwa reclamation project areas having sandy loam texture, but was as high as that of normal level saline-sodic level in Nam-Yang and So-Po reclamation project areas having silty loam texture even though the soils were cultivated more than 10 years as a paddy. Some part of Saemangeum area was surveyed and soil textures were various; some were silt loam and some were sandy loam. The ECe values were very high in topsoil and subsoil.

Assessment of methane emission with application of rice straw in a paddy field

  • Choi, Eun Jung;Jeong, Hyun Cheol;Kim, Gun Yeob;Lee, Sun Il;Gwon, Hyo Suk;Lee, Jong Sik;Oh, Taek Keun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.857-868
    • /
    • 2019
  • A flooded rice field is one of the significant sources of anthropogenic methane (CH4) with the intensity of the emissions dependent on management practices. Incorporation of rice straw, which is one of the organic amendments, induces the increase of methane emissions during the flooding season. In this study, we measured of methane emission according to applications of rice straw in different soil textures during a cultivation period in 2017 and 2018. The fallow treatments were non application of rice straw (NA), spring plowing after spring spreading of rice straw (SPSA), spring plowing after previous autumn spreading of rice straw (SPAA), and autumn plowing after previous autumn spreading of rice straw (APAA). The SPSA treatment emitted the highest total methane from loam soil in both 2017 (596.7 CH4 kg ha-1) and 2018 (795.4 CH4 kg ha-1). The same trend was observed in silt clay loam soil; the SPSA treatment still emitted the highest amount of methane in both 2017 (845.9 CH4 kg ha-1) and 2018 (1,071.7 CH4 kg ha-1). The lowest emission among the rice straw incorporated plots came from the APAA treatment for both soil texture types in all the seasons. The conversion factors of the SPAA were 0.79 and 0.65 from the loam and silt clay loam soils, respectively. Relatedly, the conversion factors of the APAA were 0.71 and 0.43 from the loam and silt clay loam soils, respectively. The above observations mean therefore that incorporation of rice straw early in the fallow reduces methane emissions in the main rice growing season.

Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.564-571
    • /
    • 2016
  • As the amount of rice straw collected increases, green manure crops are used to provide the needed organic matter. However, as green manure crops generate methane in the process of decomposition, we tested with different tillage depths in order to reduce the emission. The atmosphere temperature of the chamber was $25{\sim}40^{\circ}C$ during the examination of methane and soil temperature was $2{\sim}10^{\circ}C$ lower than air temperature. The redox potential (Eh) of the soil drastically fell right before irrigated transplanting and showed -300~-400 mV during the cultivating period of rice (7~106 days after transplant). When hairy vetch was incorporated to soil and the field was not irrigated, the generation of methane did not occur from 12 to 4 days before transplanting rice and started after irrigation. Regarding the pattern of methane generation during the cultivation of rice, methane was generated 7 days after transplanting, reached the pinnacle at by 63~74 days after transplanting, rapidly decreased after 86~94 days past transplanting and stopped after 106 days past transplanting. When tested by different soil types, methane emission gradually increased in loam and clay loam during early transplant, whereas it sharply increased in sandy loam. The total amount of methane emitted was highest in sandy loam, followed by loam and clay loam. In all three soil types, methane emission significantly reduced when tillage depth was 20 cm compared to 10 cm. The rice growths and yield were not affected by tillage depth. Therefore, reduction of methane emission could be achieved when application hairy vetch to the soil with tillage depth of 20 cm in paddy soil.

Interpreting in situ Soil Water Characteristics Curve under Different Paddy Soil Types Using Undisturbed Lysimeter with Soil Sensor

  • Seo, Mijin;Han, Kyunghwa;Cho, Heerae;Ok, Junghun;Zhang, Yongseon;Seo, Youngho;Jung, Kangho;Lee, Hyubsung;Kim, Gisun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.336-344
    • /
    • 2017
  • The soil water characteristics curve (SWCC) represents the relation between soil water potential and soil water content. The shape and range of SWCC according to the relation could vary depending on soil characteristics. The objective of the study was to estimate SWCC depending on soil types and layers and to analyze the trend among them. To accomplish this goal, the unsaturated three soils were considered: silty clay loam, loam, and sandy loam soils. Weighable lysimeters were used for exactly measuring soil water content and soil water potential. Two fitting models, van Genuchten and Campbell, were applied. Two models entirely fitted well the measured SWCC, indicating low RMSE and high $R^2$ values. However, the large difference between the measured and the estimated was found at the 30 cm layer of the silty clay loam soil, and the gap was wider as soil water potential increased. In addition, the non-linear decrease of soil water content according to the increase of soil water potential tended to be more distinct in the sandy loam soil and at the 10 cm layer than in the silty clay loam soil and at the lower layers. These might be seen due to the various factors such as not only pore size distribution, but also cracks by high clay content and plow pan layers by compaction. This study clearly showed difficulty in the estimation of SWCC by such kind of factors.

Behavior of New Heribicide Bensulfuron methyl (DPX-F5384) in Soil (토양중(土壤中)에 있어서 신규(新規) 제초제(除草劑) Bensulfuron methyl (DPX-F5384) 의 행동(行動))

  • Jang, I.S.;Moon, Y.H.;Ryang, H.S.
    • Korean Journal of Weed Science
    • /
    • v.7 no.1
    • /
    • pp.74-77
    • /
    • 1987
  • This study was undertaken to elucidate the behavior of herbicide bensulfuron methyl [ methyl 2-[[[[[(4, 6-dimethoxy pryrimidine-2yl) amino] carbonyl] amino] sulfonyl] methyl] benzoate] in soils under flooded conditions using the test plant Monochoria vaginalis Pres 1. Besulfuron methyl moved to 3cm depth in clay loam soil and 4 cm depth in sandy loam soil. Herbicide-treated layer was found 0 to 2 cm profile in the former and 0 to 3 cm profile the latter. The half life (GR50) was 87 days in clay loam soil and 78 days in sandy clay loam soil. The period of inactivation lasted for 110 days in clay loam and 100 days in sandy clay loam soil.

  • PDF

Tillage Characteristics of the Single-Edged Rotary Blade (단면형 로터리경운날의 경운 특성)

  • 이승규;김성태;우종구
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.369-378
    • /
    • 2000
  • The purpose of this study is to developed high-efficient rotary tillage system for a power tiller by improving the rotary blade. A kind of the rotary blade with single-edged blade(DS) was developed that requires lower tillage energy than conventional double-edged blade(CD) on the design theory for Japanese rotary blade. In order to find out the tillage characteristics between the single-edged blade and the double-edged blade for power tiller, experiments were performed in soil-bins which were filled up clay loam, loam and sandy loam, and then analyzed the effects of the factors such as soil texture, travelling speed, rotational speed, and tillage depth to each of the blades. And field tests were carried out to compare tillage performances of the two blades using rotary cultivator driven by conventional power tiller. The results of this study were summarized as follows; 1) On the soil bin experiment, it was found that tillage torque of the single-edged blade was less than the ones of the double-edged blade. The decreasing ratios of maximum tillage torque of the single-edged blade to the ones of the double-edged blade were 1 to 8% at clay loam, 5 to 20% at loam and 9 to 31% at sandy loam, respectively. 2) By the field tests, that the tillage performances with the single-edged blade compared with the double-edged blade was improved about 19% in field capacity, about 34% in fuel consumption, and 12.5% in soil breaking ratio. Furthermore, the fluctuation of engine speed, the variation of exhaust gas temperature, and the amount of soil clogging on the blade and straw wound on the rotary shaft showed lower values with the developed blade than the conventional blade. So, it may be concluded that tillage performance by the developed single-edged blade was improved compared with the one by the conventional double-edged blade.

  • PDF