• 제목/요약/키워드: loading speed

검색결과 721건 처리시간 0.027초

지오그리드로 보강한 고속철도 노반의 거동 특성 (Behavior of High-Speed Rail Roadbed Reinforced by Geogrid under Cyclic Loading)

  • 신은철;김두환
    • 한국철도학회논문집
    • /
    • 제3권2호
    • /
    • pp.84-91
    • /
    • 2000
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. With the test results, the bearing capacity ratio, elastic rebound ratio, subgrade modulus and the strain of geogrids under loading were investigated. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to estimate the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

Cyclic behavior of superelastic shape memory alloys (SMAs) under various loading conditions

  • Hu, Jong Wan
    • 도시과학
    • /
    • 제7권1호
    • /
    • pp.5-9
    • /
    • 2018
  • The nickel-titanium shape memory alloy (SMA), referred to as Nitinol, exhibits a superelastic effect that can be restored to its original shape even if a significant amount of deformation is applied at room temperature, without any additional heat treatment after removal of the load. Owing to these unique material characteristics, it has widely used as displacement control devices for seismic retrofitting in civil engineering fields as well as medical, electrical, electronic and mechanical fields. Contrary to ordinarty carbon steel, superelastic SMAs are very resistant to fatigue, and have force-displacement properties depending on loading speed. The change for the mechanical properties of superelastic SMAs are experimentally inviestigated in this study when loading cycle numbers and loading speeds are different. In addition, the standardized force-displacement properties of such superelastic SMAs are proposed with an aim to efficiently design the seismic retrofitting devices made of these materials.

CFS 보강 R/C 보의 균열 및 탈착 (Debonding and Crack of the R/C Beam Strengthened with CFS)

  • 김충호;장희석;박현영;고신웅
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.173-176
    • /
    • 2005
  • This study look into the mechanisms of growth and magnification in the cracks and delamination on the beams repaired with CFS. The experimental parameters was a loading type, loading speed and pre-crack. In the experiments, it was confirmed that the failure of beams began with development and propagation of the delamination in the below the loading point due to magnification of cracks, but it was not concerned with loading type, loading speed and pre-cracks. Particularly, in the case of beams having the pre-cracks, growth of crack concentrated at the special crack below the loading point and led to failure of the beam by delamination due to magnification of crack.

  • PDF

열차하중선도의 수치적 분석 및 비교 (Numerical Analysis and Comparision of Train Loading Diagram)

  • 오지택;최진유;김현민;박찬
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.1029-1034
    • /
    • 2002
  • Object of this paper are numerical and experimental evaluation of Korean Standard Train Loading(L-loading scheme) with respect to UIC's and real train loading, quantitative formulation of the real train types in South Korea. These objects are require to changing environment of train operation, for example, high density traffic and gradual train speed increase. For the reasonable repair, reinforcement and rehabilitation of existing railway infrastructures, statistical analysis of the loading effect during the long term experiment in conventional lines have to conduct. Statistical quantitative formulation of the loading case need to consistency numerical evaluation of the railway safety. Hereafter, those results will be core technical data for the economy enhancement of international line construction. Further, these results are using to make track maintenance criterions for transcontinental, speed up railway and revision of standard train leading diagram.

  • PDF

비파괴 및 재하시험에 의한 노후 교량의 거동특성 (Behavior Properties of Bridge by Non Destructive and Loading Test)

  • 민정기;김영익
    • 한국농공학회논문집
    • /
    • 제46권1호
    • /
    • pp.61-71
    • /
    • 2004
  • The performance evaluation and deflection of 3 spans concrete simplicity slab bridge analyzed by non-destructive and loading test. Compressive strength of slab and pier appeared in the range of each 353∼366 kgf/$cm^2$ and 152∼215 kgf/$cm^2$ in rebound number test. Also, it appeared that concrete quality of slab was good after performance improvement. The average compressive strength of slab by core picking appeared 229 kg/$cm^2$. In reinforcing bar arrangement test of span and member, it appeared that horizontal and vertical reinforcing bar was arranged to fixed interval. The value of calculation deflection that carried structural analysis with deflection analysis wave in static loading test appeared higher than that of experimental deflection and it appeared that hardness of this bridge was good. Maximum impact factor that estimated from deflection by running speed in dynamic loading test appeared by 0.216 in 10 km/hr running speed.

Impact performance study of filled thin-walled tubes with PM-35 steel core

  • Kunlong Tian;Chao Zhao;Yi Zhou;Xingu Zhong;Xiong Peng;Qunyu Yang
    • Structural Engineering and Mechanics
    • /
    • 제91권1호
    • /
    • pp.75-86
    • /
    • 2024
  • In this paper, the porous metal PM-35 is proposed as the filler material of filled thin-walled tubes (FTTs), and a series of experimental study is conducted to investigate the dynamic behavior and energy absorption performance of PM-35 filled thin-walled tubes under impact loading. Firstly, cylinder solid specimens of PM-35 steel are tested to investigate the impact mechanical behavior by using the Split Hopkinson pressure bar set (SHP); Secondly, the filled thin-walled tube specimens with different geometric parameters are designed and tested to investigate the feasibility of PM-35 steel applied in FTTs by the orthogonal test. According to the results of this research, it is concluded that PM-35 steel is with the excellent characteristics of high energy absorption capacity and low yield strength, which make it a potential filler material for FTTs. The micron-sizes pore structure of PM-35 is the main reason for the macroscopic mechanical behavior of PM-35 steel under impact loading, which makes the material to exhibit greater deformation when subjected to external forces and obviously improve the toughness of the material. In addition, PM-35 steel core-filled thin-wall tube has excellent energy absorption ability under high-speed impact, which shows great application potential in the anti-collision structure facilities of high-speed railway and maglev train. The parameter V0 is most sensitive to the energy absorption of FTT specimens under impact loading, and the sensitivity order of different variations to the energy absorption is loading speed V0>D/t>D/L. The loading efficiency of the FTT is affected by its different geometry, which is mainly determined by the sleeve material and the filling material, which are not sensitive to changes in loading speed V0, D/t and D/L parameters.

2열 외부가압 공기 저어널 베어링에서 급기구 위치에 따른 부하지지 특성에 관한 연구 (A Study on the Loading Capacity According to the Source Positions in Externally Pressurized Air Journal Bearing with Two Row Sources)

  • 이종열;성승학;이득우
    • Tribology and Lubricants
    • /
    • 제17권5호
    • /
    • pp.365-372
    • /
    • 2001
  • This paper has been presented the hydrodynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from existed investigations in the side of pressure distribution of air film because of the high speed of journal and the wedge effects by the eccentricity. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. In this paper, The pressure behavior in theory of air film according to the eccentricity of journal and the source positions analyzed. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

반복 동적하중에 의한 알루미나 세라믹스의 피로거동 (Fatigue Behavior of Alumina Ceramics under the Repeated Dynamic Loading)

  • 이규형;박성은;이홍림
    • 한국세라믹학회지
    • /
    • 제35권8호
    • /
    • pp.850-856
    • /
    • 1998
  • The dynaamic fatigue behavior of alumina ceramics was observed at room temperature using four-point bending method. Dynamic fatigue fracture strength was observed as function of down speed and notch length. The crack growth exponent of the specimens was calculated from the fracture strength and lifetime in dynamic fatigue test. After loading the stresses in the range of 0% to 105% compared with the average in-ert strength the value of residual fracture strength was measured for unnotched and 0.5mm notched speci-mens at the 0.001 and 0.0005 mm/min down speed respectively. After the 95% stress of the average inert strength was applied repeatedly the value of rsidual fracture strength was measured for 0.5mm notched specimens at the 0.001 and 0.0005 mm/min down speed respectively. The material constant A was found to be almost the same and not to depend on the loading mode or the down speed for unnotched and notched specimen. The value of fracture strength with time calculated from the constants n and A was in good agreement with the measured value.

  • PDF

Anuran Metamorphosis: a Model for Gravitational Study on Motor Development

  • Jae Seung;Jin Cheul;In-Ho;Park, In-Ho
    • Animal cells and systems
    • /
    • 제4권3호
    • /
    • pp.223-229
    • /
    • 2000
  • Limbs and supporting structures of an organism experience a full weight of its own when it lands from water, because neutral buoyancy in the aquatic habitat will be no longer available in the terrestrial world. Metamorphosis of anuran amphibians presents 8 good research model to examine how this transition from non-loading to weight-loading affects development of motor capacity at the time of their first emergence on land. Our video analysis of the transitional anurans, Rana catesbeiana, at Gosner stage 46 (the stage of complete transformation) demonstrated that the take-off speed increased 1.23-fold after the first six hours of weight-loading on the wet ground. It did not increase further during the following three days of loading, and was close to the level of mature frogs with different body mass. During development of larvae in deep water with no chance of landing through metamorphosis, both tension and power of a hindlimb anti-gravity muscle increased 5-fold between stages 37 and n. However, the muscle contractility increased more rapidly when the larvas could access the wet ground by their natural landing behavior after stages 41-42. Muscle power, one of major factors affecting locomotory speed, was 1.29-fold greater in the loaded than in the non-loaded larvae at the transitional stage. Thus, weight-loading had a potentially significant effect on the elevation of motor capacity, with a similar extent of increment in locomotory speed and muscle power during the last stages of metamorphosis. Such a motor adjustment of the froglets in a relatively short transitional period would be important for effective ecological interactions and survival in their inexperienced terrestrial life.

  • PDF

실대형 실험을 이용한 가진주파수 변화에 따른 콘크리트궤도의 동적평가 (Dynamic behavior of Track/Roadbed with Loading Frequency in Concrete Track through Full Scale Model Test)

  • 최찬용;김현기;엄기영;강윤석
    • 한국지반신소재학회논문집
    • /
    • 제13권3호
    • /
    • pp.39-47
    • /
    • 2014
  • 호남고속철도에 부설된 동일한 궤도노반시스템을 실제 열차하중이 가능한 실대형 가진시험을 통해 성능을 평가하였다. 실험결 과 Odemark 등가깊이 이론에 의한 노반압력과 매우 유사한 것을 확인하였다. 콘크리트궤도에서 정적하중 330 kN을 재하시 노반 상부의 토압은 50 kPa 이내로 발생하였고, 정적하중시험과 반복하중시험 결과는 비교적 큰 차이가 없었다. HSB의 탄성변위는 증속시험 시 관리기준값 1 mm에 비해 약 1/100 수준이며, 노반의 탄성변위량과 비교해볼 때 1/175 정도로 매우 작은 변위가 발생하였다. 가진주파수의 크기에 따라 궤도노반의 동적거동은 가진주파수가 35 Hz이하에서는 모든 측정값이 거의 선형적으로 증가하였으나, 35 Hz이상에서는 윤중, 변위, 지반가속도 등이 감소하였다.