The Effect of Out-of-Plane Load on the In-Plane Shear Capacity of Reinforcement Concrete Shear Wall (철근 콘크리트 전단벽에서 면외 하중이 면내 전단성능에 미치는 영향)
-
- Journal of the Earthquake Engineering Society of Korea
- /
- v.28 no.2
- /
- pp.77-83
- /
- 2024
The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.
The weakening and softening behavior of soft clay subjected to cyclic loading due to the build-up of excess pore water pressure is well-known. During the design stage of the foundation of highways and coastal high-rise buildings, it is important to study the mechanical behavior of marine soils under cyclic loading as they undergo greater settlement during cyclic loading than under static loading. Therefore, this research evaluates the cyclic stress-strain and shear strength of untreated and treated marine clay under the effects of wind, earthquake, and traffic loadings. A series of laboratory stress-controlled cyclic triaxial tests have been conducted on both untreated and treated marine clay using different effective confining pressures and a frequency of 0.5 and 1.0 Hz. In addition, treated samples were cured for 28 and 90 days and tested under a frequency of 2.0 Hz. The results revealed significant differences in the performance of treated marine clay samples than that of untreated samples under cyclic loading. The treated marine clay samples were able to stand up to 2000 loading cycles before failure, while untreated marine clay samples could not stand few loading cycles. The untreated marine clay displayed a higher permanent axial strain rate under cyclic loading than the treated clay due to the existence of new cementing compounds after the treatment with recycled tiles and low amount (2%) of cement. The effect of the effective confining pressure was found to be significant on untreated marine clay while its effect was not crucial for the treated samples cured for 90 days. Treated samples cured for 90 days performed better under cyclic loading than the ones cured for 28 days and this is due to the higher amount of cementitious compounds formed with time. The highest deformation was found at 0.5 Hz, which cannot be considered as a critical frequency since smaller frequencies were not used. Therefore, it is recommended to consider testing the treated marine clay using smaller frequencies than 0.5 Hz.
Purpose - Despite the importance of price, many companies do not implement pricing policies smoothly, because typical price management strategies insufficiently consider logistics efficiency and an increase in logistics costs due to logistics waste. This study attempts to examine the effect of product line pricing, which corresponds to product mix pricing, on logistics efficiency in the case of manufacturer A, and analyzes how logistics performance changes in response to these variables. Research design, data, and methodology - This study, based on the case of manufacturer A, involved research through understanding the current status, analyses, and then proposing improvement measures. Among all the products of manufacturer A, product group B was selected as the research object, and its distribution channel and line pricing were examined. As a result of simulation, for products with low loading efficiency, improvement measures such as changing the number of bags in the box were suggested, and a quantitative analysis was conducted on how these measures influence logistics costs. The TOPS program was used for the Pallet loading efficiency simulation tool in this study. To prevent products from protruding out of the pallet, the maximum measurement was set as 0.0mm, and loading efficiency was based on the pallet area, and not volume. In other words, its size (length x width) was focused upon, following the purpose of this study and, then, the results were obtained. Results - As a result of the loading efficiency simulation, when the number of bags in the box was changed for 36 products with low average loading efficiency of 73.7%, as shown in