• Title/Summary/Keyword: loading performance

Search Result 2,636, Processing Time 0.036 seconds

Seismic behavior of steel reinforced concrete (SRC) T-shaped column-beam planar and 3D hybrid joints under cyclic loads

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.555-572
    • /
    • 2015
  • This paper presents an experimental study of three two-dimensional (2D/planar) steel reinforced concrete (SRC) T-shaped column-RC beam hybrid joints and six 3D SRC T-shaped column-steel beam hybrid joints under low cyclic reversed loads. Considering different categories of steel configuration types in column cross section and horizontal loading angles for the specimens were selected, and a reliable structural testing system for the spatial loading was employed in the tests. The load-displacement curves, carrying capacity, energy dissipation capacity, ductility and deformation characteristics of the test subassemblies were analyzed. Especially, the seismic performance discrepancies between planar hybrid joints and 3D hybrid joints were intensively compared. The failure modes for planar loading and spatial loading observed in the tests showed that the shear-diagonal compressive failure was the dominating failure mode for all the specimens. In addition, the 3D hybrid joints illustrated plumper hysteretic loops for the columns configured with solid-web steel, but a little more pinched hysteretic loops for the columns configured with T-shaped steel or channel-shaped steel, better energy dissipation capacity & ductility, and larger interlayer deformation capacity than those of the planar hybrid joints. Furthermore, it was revealed that the hysteretic loops for the specimens under $45^{\circ}$ loading angle are generally plumper than those for the specimens under $30^{\circ}$ loading angle. Finally, the effects of steel configuration type and loading angle on the seismic damage for the specimens were analyzed by means of the Park-Ang model.

Pull-off resistance of a screwless implant-abutment connection and surface evaluation after cyclic loading

  • Alevizakos, Vasilios;Mosch, Richard;Mitov, Gergo;Othman, Ahmed;See, Constantin von
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.152-159
    • /
    • 2021
  • Purpose. The aim of this study was to investigate to what extent cyclic load affects the screwless implant-abutment connection for Morse taper dental implants. Materials and Methods. 16 implants (SICvantage max) and 16 abutments (Swiss Cross) were used. The screwless implant-abutment connection was subjected to 10,000 cycles of axial loading with a maximum force of 120 N. For the pull-off testing, before and after the same cyclic loading, the required force for disconnecting the remaining 6 implant-abutment connections was measured. The surface of 10 abutments was examined using a scanning electron microscope 120× before and after loading. Results. The pull-off test showed a significant decrease in the vertical force required to pull the abutment from the implant with mean 229.39 N ± 18.23 before loading, and 204.30 N ± 13.51 after loading (P<.01). Apart from the appearance of polished surface areas and slight signs of wear, no visible damages were found on the abutments. Conclusion. The deformation on the polished abutment surface might represent the result of micro movements within the implant-abutment connection during loading. Although there was a decrease of the pull-off force values after cyclic loading, this might not have a notable effect on the clinical performance.

Evaluation of Crack Resistance of Cold Joint as Usage of Sealing Tape (실링 테이프 적용에 따른 시공조인트 균열 저항성 평가)

  • Lee, JaeJun;Lee, Seonhaeng;Kim, Du-Byung;Lee, Jinwook
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • PURPOSES : In order to evaluate a crack resistance at cold joint, sealing tape was adopted to apply at cold joint instead of typical tack coat material(RSC-4). The sealing tape was made by hot sealing material. The crack resistance as function of environmental and traffic loading was measured with visual observation. METHODS : In this study, the crack resistance was evaluated as function of environmental and traffic loading. The freeze-thaw method was adopted for environmental loading of asphalt pavement. condition. The damage of cold joint under freeze-thaw action is initiated by ice expansion load and accelerated by the interfacial damage between new and old asphalt pavement. The traffic loading was applied with wheel tracking machine on the cold joint area of the asphalt pavement for 3 hours at $25^{\circ}C$. The evaluation of crack resistance was measured with visual observation. The freeze-thaw results shows that the sealing tape was significantly increased the crack resistance based on. RESULTS : To estimate the crack resistance at cold joint area due to the environmental loading, the Freeze-thaw test was conducted by exposing the product to freezing temperature(approximately $-18^{\circ}C$) for 24 hours, and then allowing it to thaw at $60^{\circ}C$ for 24 hours. The tack coat material(RSC-4) was debonded after 21 cycles of the Freeze-thaw test. The first crack was observed after 14 freeze-thaw cycle with RSC-4 material. But, the sealing tape was not debonded after 24 cycle test. Also, the sealing tape shows the better performance of the crack resistance under the traffic loading with wheel track test. The crack was generated the under traffic loading with RSC-4(tack coating), however, the crack was not shown with sealing tape. It indicates that the sealing tape has a strong resistance of tensile stress due to traffic loading. CONCLUSIONS :Based on limited laboratory test result, a performance of crack resistance using the sealing tape is better than that of general tack coat material(RSC-4). It means that the sealing tape is possible to extend a pavement service life because the crack, one of the main pavement distresses, will be delayed.

Effect of Electrode Design on Electrochemical Performance of Highly Loaded LiCoO2 Positive Electrode in Lithium-ion Batteries (리튬이온 이차전지용 고로딩 LiCoO2 양극의 전극설계에 따른 전기화학적 성능연구)

  • Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • Highly loaded LiCoO2 positive electrodes are prepared to construct high-energy density lithium-ion batteries, their electrochemical performances are evaluated. For the standard electrode, a loading of about 2.2 mAh/㎠ is used, and for a high-loading electrode, an electrode is manufactured with a loading level of about 4.4 mAh/㎠. The content of carbon black as electronic conducting additive, and the porosity of the electrode are configured differently to compare the effects of electron conduction and ionic conduction in the highly loaded LiCoO2 electrode. It is expected that the electrochemical performance is improved as the amount of the carbon black increases, but the specific capacity of the LiCoO2 electrode containing 7.5 weight% carbon black is rather reduced. When the conductive material is excessively provided, an increase of electrode thickness by the low content of the LiCoO2 active material in the same loading level of the electrode is predicted as a cause of polarization growth. When the electrode porosity increases, the path of ionic transport can be extended, but the electron conduction within the electrode is disadvantageous because the contact between the active material and the carbon black particles decreases. As the electrode porosity is lowered through the sufficient calendaring of the electrode, the electrochemical performance is improved because of the better contact between particles in the electrode and the reduced electrode thickness. In the electrode design for the high-loading, it is very important to construct the path of electron conduction as well as the ion transfer and to reduce the electrode thickness.

Structural Performance Evaluation of VES Damper System subjected to Cyclic Loadings(CST30) (가력하중을 통한 CST30제진댐퍼시스템의 구조성능 평가)

  • Kim, DaeHun;Lee, DongKyu;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.61-68
    • /
    • 2015
  • The performance enhancement of various structural building systems from natural hazards has become an inctreasingly important issue in engineering field. In this paper, visco-elastic(VE) CST30 damping systems were tested under cyclic loadings to evaluate their performance in terms of ductility and energy dissipation. Main test variables are relative shear stiffness, rate of loading frequency, and thickness of specimens to evaluate the seismic capacity based on the performance criteria. This experiment was performed using a total of 12 specimens, subjected to cyclic loadings up to a shear deformation of 500%. All the CST30 dampers provided a ductile and stable hysterestic behavior when subjected to the demands of large shear stiffness and different loading frequencies. The test results showed that the CST30 dampers are an effective damping systems to enhance the buildings performance for remodeling and retrofit of buildings.

Calibration of Fatigue Performance Prediction Model for Flexible Pavements Using Field Data (현장 데이터를 이용한 연성포장용 피로 공용성 예측모델 검정)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.234-241
    • /
    • 2012
  • The main objective of this research is to calibrate the performance prediction models for the growth of fatigue cracking in multi-layered asphalt concrete pavement systems. However, the calibration factors are dependent upon the prediction model, testing method, and the laboratory loading history. A detailed study on the field data has revealed that the performance of flexible pavements is affected by both the traffic loading and the environmental cycling which is related to the age of the pavements. Thus, a composite indicator was developed in this study which utilizes both the traffic and the age information with appropriate weighting factors. Using the proposed fatigue performance model the calibration factors were also estimated through the comparisons between the field performances on fatigue cracking and the laboratory-based fatigue life.

Seismic Performance Assessment of Circular Reinforced Concrete Bridge Piers with Confinement Steel: II. Performance Assessment (원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가 : II. 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kang, Hyeong-Taek;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.351-361
    • /
    • 2006
  • In this study, nonlinear finite element analysis procedures are presented for the seismic performance assessment of circular reinforced concrete bridge piers with confinement steel. This paper defines a damage index based on the predicted hysteretic behavior of a circular reinforced concrete bridge pier. Damage indices aim to provide a means of quantifying numerically the damage in circular reinforced concrete bridge piers sustained under earthquake loading. The proposed numerical method is applied to circular reinforced concrete bridge piers with confinement steel tested by the authors. The proposed numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several test specimens investigated.

Performance for a small on-site wastewater treatment system using the absorbent biofilter in rural areas (흡수성 Biofilter 를 이용한 농촌 소규모 오수처리 시설의 성능)

  • Kwun, Soon-Kuk;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.310-315
    • /
    • 1999
  • The feasibility of an absorbent biofilter system was examined for rural wastewater treatment. Hydraulic loading rates varied from 50 to 250 cm/day. Effluent of the septic tank was fed into the absorbent biofilter, and small ventilation fan was provided to supply air at the rate of 250 L/min to aerate the biofilter. The biofilter system demonstrated high removal rates for $BOD_5$ and TSS at the loading rate of 150 cm/day, generally meeting the Korean effluent water quality standard of 20 mg/L applicable to both. The nutrient removal was less satisfactory than the results of $BOD_5$ and TSS, but it was within the expected range of biological treatment processes. Considering the abnormally high influent concentration of nutrients during the experiment, better performance results could have been obtained if ordinary domestic wastewater was used. The system performance was not significantly affected by the hydraulic loading up to 150 cm/day, which is far more than the loading limit of the sand filter systems. Maintenance requirement was minimal, and no problems with noise, odor, flies or sludge arose. Since the biofilter system can be operated at a distance, operation in remote rural area and multi-system connected to one control office might be advantageous to the rural area. Overall, considering the cost-effectiveness, stable performance, and minimum maintenance, the biofilter system was thought to be a competitive alternative to treat wastewater in Korean rural communities.

  • PDF

A Study on Roll Motion in Waves of Capsized Small Vessel Based on Loading Condition (전복사고 발생 소형선박의 적재상태를 고려한 파랑중 횡동요 연구)

  • KIM, Sung-Uk;KIM, In-Seob;SONG, Mi-Kyoung;LEE, Gun-Kyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1031-1037
    • /
    • 2021
  • The frequency of marine accidents of vessels in Korea is steadily increasing and it is concentrated on small vessels with less than 10 tons of gross tonnage. Therefore, preventing capsizing accidents in small vessels is important to reduce the cost in terms of human and property damage due to such accidents. However, research on the seakeeping performance of small vessels has been insufficient, and there are no domestic and international regulations on seakeeping performance. Therefore, in this study, capsizing accidents caused by poor loading conditions were investigated by examining the adjudications of the small vessels in which the capsizing accidents occurred. Hydrostatic calculations and seakeeping performance analysis were performed for a representative vessel. A vessel generally performs a six-degree-of-freedom motion during operation. In this study, the response amplitude operator and response spectrum of a representative vessel were calculated to determine the roll motion. Moreover, a short-term statistical analysis of the vessel according to the loading conditions was performed for the wave stationary status for 3 h. From the results, it was estimated that, when the loading condition of a small vessel is poor, its roll motion increases, greatly reducing its stability.

Numerical simulation of steel plate reinforced concrete panels exposed to impact loading using multi-solver technique (Multi-solver 기법을 이용한 강판보강 콘크리트 패널의 충돌 수치 시뮬레이션)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.590-595
    • /
    • 2008
  • In the present paper, the impact damage behavior of steel plate reinforced concrete panels exposed to shock impulsive loading and fragment impact loading is investigated. To evaluate the retrofit performance of a steel-strengthened concrete panels, a numerical experiment using a numerical simulation with AUTODYN, an explicit analysis program is introduced because a real explosion experiment requires the vast investment and expense for facilities as well as the deformation mechanisms are too complicated to be reproduced with a conventional closed-form analyses. The model for the analysis is simplified and idealized as a two-dimensional and axisymmetric case controled with geometry, boundary condition and material properties in order to obtain a resonable computation time. As a result of the analysis, panels subject to either shock loading or fragment loading without the steel plate reinforcement experience the perforation with spalled fragments. In addition, the panels reinforced with steel plate can prevent the perforation and provide the good mechanical effect such as the increase of global stiffness and strength through the composite action between the concrete slab and the steel plate.

  • PDF