• Title/Summary/Keyword: loading performance

Search Result 2,636, Processing Time 0.028 seconds

Fire resistance tests of LSF walls under combined compression and bending actions

  • Peiris, Mithum;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.483-500
    • /
    • 2022
  • Cold-formed steel wall panels sheathed with gypsum plasterboard have shown superior thermal and structural performance in fire. Recent damage caused by fire events in Australia has increased the need for accurate fire resistance ratings of wall systems used in low- and mid-rise construction. Past fire research has mostly focused on light gauge steel framed (LSF) walls under uniform axial compression and LSF floors under pure bending. However, in reality, LSF wall studs may be subject to both compression and bending actions due to eccentric loading at the wall to-roof or wall-to-floor connections. In order to investigate the fire resistance of LSF walls under the effects of these loading eccentricities, four full-scale standard fire tests were conducted on 3 m × 3 m LSF wall specimens lined with two 16 mm gypsum plasterboards under different combinations of axial compression and lateral load ratios. The findings show that the loading eccentricity can adversely affect the fire resistance level of the LSF wall depending on the magnitude of the eccentricity, the resultant compressive stresses in the hot and cold flanges of the wall studs caused by combined loading and the temperatures of the hot and cold flanges of the studs. Structural fire designers should consider the effects of loading eccentricity in the design of LSF walls to eliminate their potential failures in fire.

Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines

  • Kurtoglu, Ahmet Emin
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Steel girders are the structural members often used for passing long spans. Mostly being subjected to patch loading, or concentrated loading, steel girders are likely to face sudden deformation or damage e.g., web breathing. Horizontal or vertical stiffeners are employed to overcome this phenomenon. This study aims at assessing the feasibility of a machine learning method, namely the support vector machines (SVM) in predicting the patch loading resistance of longitudinally stiffened webs. A database consisting of 162 test data is utilized to develop SVM models and the model with best performance is selected for further inspection. Existing formulations proposed by other researchers are also investigated for comparison. BS5400 and other existing models (model I, model II and model III) appear to yield underestimated predictions with a large scatter; i.e., mean experimental-to-predicted ratios of 1.517, 1.092, 1.155 and 1.256, respectively; whereas the selected SVM model has high prediction accuracy with significantly less scatter. Robust nature and accurate predictions of SVM confirms its feasibility of potential use in solving complex engineering problems.

Effect of roof diaphragm on masonry structures under dynamic loading

  • Sathiparan, Navaratnarajah
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.351-366
    • /
    • 2016
  • The structural collapse of masonry structure under dynamic loading displays many possible failure mechanisms often related to interaction between structural components. Roof collapse is one of the major damage mechanisms observed in masonry structures during an earthquake. Better connection between the roof diaphragm and walls may be preventing roof collapse, but it can affect other failure mechanisms. In spite of this fact, less attention has been paid to the influence of the roof diaphragm effect on masonry structures and little research has been implemented in this field. In the present study, the roof diaphragm effect on the unreinforced masonry structure under dynamic loading has been experimentally investigated. Three one-quarter scale one-story adobe masonry house models with different roof conditions have been tested by subjecting them to sinusoid loading on a shaking table simulator. Phenomena such as failure pattern, dynamic performance of masonry structure were examined.

Dynamic Network Loading Method and Its Application (동적 네트워크 로딩 방법 및 적용에 관한 연구)

  • 한상진
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.101-110
    • /
    • 2002
  • This study first explains general features of traffic assignment models and network loading methods, and investigates the relationship between them. Then it introduces a dynamic network loading method, which accounts far time variable additionally. First of all, this study suggests that it is important to consider some requirements for the dynamic network loading, such as causality, FIFO(First-In-First-Out) discipline, the flow propagation, and the flow conservation. The details of dynamic network loafing methods are explained in the form of algorithm, and numerical examples are shown in the test network by adopting deterministic queuing model for a link Performance function.

Design and Implementation of Wideband Microstrip Antenna with Resistive and Inductive Loading (저항성 및 유도성 부하를 가진 평판형 광대역 안테나의 설계 및 제작)

  • Jeon, Sang-Bong;Ahn, Chang-Hoi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1111-1116
    • /
    • 2007
  • Antennas of the near field detection radar require little distortion in time domain caused by multi reflections between feed and open ends of the antenna, so that help to discriminate the target signal from the clutters. The resistive loading techniques have been used to reduce the late time distortions in order to prevent masking of target. In this paper, we design a microstrip antenna with two arms having sloted lines, which have inductance loading effect. Implemented antenna shows better performance on reducing late-time ringing, and the peak value of the received signal becomes 45% greater than the one by the antenna with two non-sloted lines.

Robust $\mu$-Controller design for Control Loading System of Flight Simulator (항공기 시뮬레이터 조종력 제어시스템의 견실 $\mu$-제어기 설계)

  • 방경호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.405-408
    • /
    • 1998
  • Generally, the principle function of simulator control loading system is to provide the pilot or student with the "feel" of the actual aircraft flight control systems during flight, taxing, and in malfunction. Flight control "feel" is the resistance felt by the pilot when moving a control stick or pedal, coupled with the amount of control surface deflection, and hence aircraft response, resulting from the input. Therefore, the control loading servo must be capable of performing to some general list of requirements derived from real aircraft control forces. In this paper, we deal with a $\mu-controller$ design for a control loading system of the flight simulator. For this, we derive a frequency response of the hydraulic system from the identification data and then design a controller using a $\mu-synthesis$ method. Under the same condition of simulation, $\mu-controller$ provides the superior performance than PID controller.than PID controller.

  • PDF

Crack obeying ability of coating material and Increasing in fatigue life of coated marine concrete (콘크리트용 코팅재의 구열추종성과 그 적용에 의한 해양콘크리트 구조의 피로수명 증가)

  • 사림신장;정상정일;권혁문;송하행의;태야지사
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.131-134
    • /
    • 1992
  • This paper deals with the obeying ability to the crack of waterproof membrane (produced from polybutadiene- or epoxy type resine) under static and repetitive loading, and an increase in fatigue life of marine concrete structure by applying the waterproof membrane. From experimental results, it is cleared that the obeying ability for crack under repetitive loading is smaller than that under static loading. With regard to fatigue life, the use of membrane possessed large obeying performance under repetitive loading results in significantly increase in fatigue life of marine concrete structure

  • PDF

Behavior of SFRC interior beam-column joints under cyclic loading

  • Khalaf, Noor Ayaad;Qissab, Musab Aied
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.167-193
    • /
    • 2020
  • In this paper, the behavior of interior steel fiber reinforced concrete beam - column joints (BCJs) under cyclic loading is investigated. An experimental program including tests on twelve reinforced concrete (BCJs) specimens under cyclic loading was carried out. The test specimens are divided into two groups having different geometry: group (G1) (symmetrical BCJs specimens) and group (G2) (nonsymmetrical BCJs specimens). The parameters considered in this study are the steel fibers (SFs) content by volume of concrete (Vf), the spacing of shear reinforcement at the joint region, and the area of longitudinal flexural reinforcement. Test results show that the addition of 0.5% SFs with stirrups spacing S=Smax has effectively enhanced the overall performance of BCJs with respect to energy dissipation, ductility ratio, spreading and width of cracks. The failure of specimens is governed mainly by the formation of a plastic hinge at the face column and outside the beam-column junction. Secondary shear cracks were also observed in the beam-column junctions.

Behaviour of volcanic pumice based thin walled composite filled columns under eccentric loading

  • Anwar Hossain, Khandaker M.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.63-81
    • /
    • 2003
  • This paper describes experimental and theoretical investigations on the behaviour of thin walled composite (TWC) filled columns under eccentric loading conditions. Details of the experimental investigation including description of the test columns, testing arrangements, failure modes, strain characteristics, load-deformation responses and effects of various geometric and material parameters are presented. The current paper also introduces the use and effect of lightweight Volcanic Pumice Concrete (VPC) in TWC columns. Analytical models for the design of columns under eccentric loading conditions have been developed taking into consideration the effect of confined concrete. The performance of design equations is validated through experimental results. The proposed design models are found to produce better results compared with available design procedures and Code based formulations. A computer program is developed to generate the interaction diagrams based on the proposed design equations that can be used for design purposes.

Self compacting reinforced concrete beams strengthened with natural fiber under cyclic loading

  • Prasad, M.L.V;saha, Prasenjit;Kumar, P.R.
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.597-612
    • /
    • 2016
  • The present work focuses on the use of coconut fiber in self compacting concrete. Self-Compacting Concrete (SCC) is a highly flowable, stable concrete which flows readily into place, filling formwork without any consolidation and without undergoing any significant segregation. Use of fibers in SCC bridge the cracks and enhance the performance of concrete by not allowing cracks to propagate. They contribute to an increased energy absorption compared to plain concrete. Coconut fiber has the highest toughness among all natural fibers. It is known that structures in the seismic prone areas are always under the influence of cyclic loading. To justify the importance of strengthening SCC beams with coir fiber, the present work has been undertaken. A comparison is made between cyclic and static loading of coconut fiber reinforced self compacting concrete (FRSCC) members. Using the test data obtained from the experiment, hysteresis loops were drawn and comparison of envelope curve, energy dissipation, stiffness degradation were made and important conclusions were draw to justify the use of coconut fiber in SCC.