• Title/Summary/Keyword: loading performance

Search Result 2,637, Processing Time 0.024 seconds

Cyclic testing of short-length buckling-restrained braces with detachable casings

  • Pandikkadavatha, Muhamed S.;Sahoo, Dipti R.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.699-716
    • /
    • 2016
  • Buckling-restrained braced frames (BRBFs) are commonly used as lateral force-resisting systems in the structures located in seismic-active regions. The nearly symmetric load-displacement behavior of buckling-restrained braces (BRBs) helps in dissipating the input seismic energy through metallic hysteresis. In this study, an experimental investigation has been conducted on the reduced-core length BRB (RCLBRB) specimens to evaluate their hysteretic and overall performance under gradually increased cyclic loading. Detachable casings are used for the concrete providing confinement to the steel core segments of all test specimens to facilitate the post-earthquake inspection of steel core elements. The influence of variable core clearance and the local detailing of casings on the cyclic performance of RCLBRB specimens has been studied. The RCLBRB specimen with the detachable casing system and a smaller core clearance at the end zone as compared to the central region exhibited excellent hysteretic behavior without any slip. Such RCLBRB showed balanced higher yielding deformed configuration up to a core strain of 4.2% without any premature instability. The strength-adjustment factors for the RCLBRB specimens are found to be nearly same as that of the conventional BRBs as noticed in the past studies. Simple expressions have been proposed based on the regression analysis to estimate the strength-adjustment factors and equivalent damping potential of the RCLBRB specimens.

Maximum a posteriori estimation based wind fragility analysis with application to existing linear or hysteretic shear frames

  • Wang, Vincent Z.;Ginger, John D.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.653-664
    • /
    • 2014
  • Wind fragility analysis provides a quantitative instrument for delineating the safety performance of civil structures under hazardous wind loading conditions such as cyclones and tornados. It has attracted and would be expected to continue to attract intensive research spotlight particularly in the nowadays worldwide context of adapting to the changing climate. One of the challenges encumbering efficacious assessment of the safety performance of existing civil structures is the possible incompleteness of the structural appraisal data. Addressing the issue of the data missingness, the study presented in this paper forms a first attempt to investigate the feasibility of using the expectation-maximization (EM) algorithm and Bayesian techniques to predict the wind fragilities of existing civil structures. Numerical examples of typical linear or hysteretic shear frames are introduced with the wind loads derived from a widely used power spectral density function. Specifically, the application of the maximum a posteriori estimates of the distribution parameters for the story stiffness is examined, and a surrogate model is developed and applied to facilitate the nonlinear response computation when studying the fragilities of the hysteretic shear frame involved.

Effects of Exercise Intensity on Hand Steadiness (운동 강도가 손 안정성에 미치는 영향)

  • Han, Seung Jo;Kim, Sun-Uk;Koo, Kyo Chan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This study is aimed to investigate the association between anaerobic-aerobic exercise intensity and hand steadiness. Hand steadiness is the decisive contributor to affecting the job performance just as in the rifle shooting and archery in sports and the microscope-related jobs requiring hand steadiness in industries. In anaerobic exercise condition hand steadiness is measured through hand steadiness tester having 9 different diameter holes after each subject exerts 25%, 50%, 75%, and 100% of maximum back strength. In aerobic exercise occasion it is evaluated at each time heart rate reaches 115%, 130%, and 145% of reference heart rate measured in no task condition after they do jumping jack. The results indicate that an increased intensity in both types of exercise reduces hand steadiness, but hand steadiness at 25% of maximum back strength and 115% of reference heart rate is rather greater than at no exercise. Just as the relation between cognitive stress and job performance has upside-down U form, so does the association of physical loading to hand steadiness, which means that a little exercise tends to improve hand steadiness in comparison with no exercise.

Behaviour of large fabricated stainless steel beam-to-tubular column joints with extended endplates

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.141-156
    • /
    • 2019
  • This paper presents the flexural behaviour of stainless steel beam-to-tubular column joints with extended endplates subjected to static loading. Moment-rotation relationships were investigated numerically by using Abaqus software with geometric and material nonlinearity considered. The prediction of damages among components was achieved through ductile damage models, and the influence of initial geometric imperfections and residual stresses was evaluated in large fabricated stainless steel joints involving hollow columns and concrete-filled columns. Parametric analysis was subsequently conducted to assess critical factors that could affect the flexural performance significantly in terms of the initial stiffness and moment resistance. A comparison between codes of practice and numerical results was thereafter made, and design recommendations were proposed for further applications. Results suggest that the finite element model can predict the structural behaviour reasonably well with the component damage consistent with test outcomes. Initial geometric imperfections and residual stresses are shown to have little effect on the moment-rotation responses. A series of parameters that can influence the joint behaviour remarkably include the strain-hardening exponents, stainless steel strength, diameter of bolts, thickness of endplates, position of bolts, section of beams and columns. AS/NZS 2327 is more reliable to predict the joint performance regarding the initial stiffness and moment capacity compared to EN 1993-1-8.

Evaluation of Dorim-Goh bridge using ambient trucks through short-period structural health monitoring system

  • Kaloop, Mosbeh R.;Hwang, Won Sup;Elbeltagi, Emad;Beshr, Ashraf;Hu, Jong Wan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.347-359
    • /
    • 2019
  • This paper aims to evaluate the behavior of Dorim-Goh bridge in Seoul, Korea, under static and dynamic loads effects by ambient trucks. The prestressed concrete (PSC) girders and reinforcement concrete (RC) slab of the bridge are evaluated and assessed. A short period monitoring system is designed which comprises displacement, strain and accelerometer sensors to measure the bridge performance under static and dynamic trucks loads. The statistical analysis is used to assess the static behavior of the bridge and the wavelet analysis and probabilistic using Weibull distribution are used to evaluate the frequency and reliability of the dynamic behavior of the bridge. The results show that the bridge is safe under static and dynamic loading cases. In the static evaluation, the measured neutral axis position of the girders is deviated within 5% from its theoretical position. The dynamic amplification factor of the bridge girder and slab are lower than the design value of that factor. The Weibull shape parameters are decreased, it which means that the bridge performance decreases under dynamic loads effect. The bridge girder and slab's frequencies are higher than the design values and constant under different truck speeds.

Performance of bridge structures under heavy goods vehicle impact

  • Zhao, Wuchao;Qian, Jiang;Wang, Juan
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.515-525
    • /
    • 2018
  • This paper presents a numerical study on the performance of reinforced concrete (RC) bridge structures subjected to heavy goods vehicle (HGV) collision. The objectives of this study are to investigate the dynamic response and failure modes of different types of bridges under impact loading as well as to give an insight into the simplified methods for modeling bridge structures. For this purpose, detailed finite-element models of HGV and bridges are established and verified against the full-scale collision experiment and a recent traffic accident. An intensive parametric study with the consideration of vehicle weight, vehicle velocity, structural type, simplified methods for modeling bridges is conducted; then the failure mode, impact force, deformation and internal force distribution of the validated bridge models are discussed. It is observed that the structural type has a significant effect on the force-transferring mechanism, failure mode and dynamic response of bridge structures, thus it should be considered in the anti-impact design of bridge structures. The impact force of HGV is mainly determined by the impact weight, impact velocity and contact interface, rather than the simplification of the superstructure. Furthermore, to reduce the modeling and computing cost, it is suggested to utilize the simplified bridge model considering the inertial effect of the superstructure to evaluate the structural impact behavior within a reasonable precision range.

Performance evaluation of a rocking steel column base equipped with asymmetrical resistance friction damper

  • Chung, Yu-Lin;Du, Li-Jyun;Pan, Huang-Hsing
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.49-61
    • /
    • 2019
  • A novel asymmetrical resistance friction damper (ARFD) was proposed in this study to be applied on a rocking column base. The damper comprises multiple steel plates and was fastened using high-strength bolts. The sliding surfaces can be switched into one another and can cause strength to be higher in the loading direction than in the unloading direction. By combining the asymmetrical resistance with the restoring resistance that is generated due to an axial load on the column, the rocking column base can develop a self-centering behavior and achieve high connection strength. Cyclic tests on the ARFD proved that the damper performs a stable asymmetrical hysteretic loop. The desired hysteretic behavior was achieved by tuning the bolt pretension force and the diameter of the round bolt hole. In this study, full-scale, flexural tests were conducted to evaluate the performance of the column base and to verify the analytical model. The results indicated that the column base exhibits a stable self-centering behavior up to a drift angle of 4%. The decompression moment and maximum strength reached 42% and 88% of the full plastic moment of the section, respectively, under a column axial force ratio of approximately 0.2. The strengths and self-centering capacity can be obtained by determining the bolt pretension force. The analytical model results revealed good agreement with the experimental results.

Performance evaluation of in-service open web girder steel railway bridge through full scale experimental investigations

  • Sundaram, B. Arun;Kesavan, K.;Parivallal, S.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.255-268
    • /
    • 2019
  • Civil infrastructures, such as bridges and tunnels are most important assets and their failure during service will have significant economic and social impact in any country. Behavior of a bridge can be evaluated only through actual monitoring/measurements of bridge members under the loads of interest. Theoretical analysis alone is not a good predictor of the ability of a bridge. In some cases, theoretical analyses can give less effect than actual since theoretical analyses do not consider the actual condition of the bridge, support conditions, level of corrosion and damage in members and connections etc. Hence actual measurements of bridge response should be considered in making decisions on structural integrity, especially in cases of high value bridges (large spans and major crossings). This paper describes in detail the experimental investigations carried out on an open web type steel railway bridge. Strain gages and displacement transducers were installed at critical locations and responses were measured during passage of locomotives. Stresses were evaluated and extrapolated to maximum design loading. The responses measured from the bridge were within the permissible limits. The methodology adopted shall be used for assessing the structural integrity of the bridge for the design loads.

Quasi real-time and continuous non-stationary strain estimation in bottom-fixed offshore structures by multimetric data fusion

  • Palanisamy, Rajendra P.;Jung, Byung-Jin;Sim, Sung-Han;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2019
  • Offshore structures are generally exposed to harsh environments such as strong tidal currents and wind loadings. Monitoring the structural soundness and integrity of offshore structures is crucial to prevent catastrophic collapses and to prolong their lifetime; however, it is intrinsically challenging because of the difficulties in accessing the critical structural members that are located under water for installing and repairing sensors and data acquisition systems. Virtual sensing technologies have the potential to alleviate such difficulties by estimating the unmeasured structural responses at the desired locations using other measured responses. Despite the usefulness of virtual sensing, its performance and applicability to the structural health monitoring of offshore structures have not been fully studied to date. This study investigates the use of virtual sensing of offshore structures. A Kalman filter based virtual sensing algorithm is developed to estimate responses at the location of interest. Further, this algorithm performs a multi-sensor data fusion to improve the estimation accuracy under non-stationary tidal loading. Numerical analysis and laboratory experiments are conducted to verify the performance of the virtual sensing strategy using a bottom-fixed offshore structural model. Numerical and experimental results show that the unmeasured responses can be reasonably recovered from the measured responses.

Behaviour and design of high-strength steel beam-to-column joints

  • Li, Dongxu;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • This paper presents a finite element model for predicting the behaviour of high-strength steel bolted beam-to-column joints under monotonic loading. The developed numerical model considers the effects of material nonlinearities and geometric nonlinearities. The accuracy of the developed model is examined by comparing the predicted results with independent experimental results. It is demonstrated that the proposed model accurately predicts the ultimate flexural resistances and moment-rotation curves for high-strength steel bolted beam-to-column joints. Mechanical performance of three joint configurations with various design details is examined. A parametric study is carried out to investigate the effects of key design parameters on the behaviour of bolted beam-to-column joints with double-extended endplates. The plastic flexural capacities of the beam-to-column joints from the experimental programme and numerical analysis are compared with the current codes of practice. It is found that the initial stiffness and plastic flexural resistance of the high-strength steel beam-to-column joints are overestimated. Proper modifications need to be conducted to ensure the current analytical method can be safely used for the bolted beam-to-column joints with high-performance materials.