• Title/Summary/Keyword: loading histories

Search Result 81, Processing Time 0.02 seconds

The study on structural performance of fiber metal laminates (섬유금속 적층판의 구조적 성능 연구)

  • Kim, Sung Joon;Kim, Tae-Uk;Kim, Seungho
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • In this paper, yield stress, tangent modulus and failure strain were varied to ascertain the influence of impact response such as impact force histories and residual energy. And the buckling behavior of FML(Fiber Metal Laminates) were analyzed using numerical method. A number of analyses on FML and aluminum panel were conducted for shear and compression loading to compare the capability of stability. And to evaluate the static performance, static analysis has performed for box beam structure. Low-velocity impact analysis has performed on FML made of aluminum 2024 sheet and glass/epoxy prepreg layers. And the buckling and static performance of FML have been compared to aluminum using the analysis results. For the comparison of structural performance, similar analyses have been carried out on monolithic aluminum 2024 sheets of equivalent weight.

Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model

  • Erfani, Saeed;Akrami, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.913-930
    • /
    • 2016
  • It is common practice to use Reduced Web Beam Sections (RWBS) in steel moment resisting frames. Perforation of beam web in these members may cause stress and strain concentration around the opening area and facilitate ductile fracture under cyclic loading. This paper presents a numerical study on the cyclic fracture of these structural components. The considered connections are configured as T-shaped assemblies with beams of elongated circular perforations. The failure of specimens under Ultra Low Cycle Fatigue (ULCF) condition is simulated using Cyclic Void Growth Model (CVGM) which is a micromechanics based fracture model. In each model, CVGM fracture index is calculated based on the stress and strain time histories and then models with different opening configurations are compared based on the calculated fracture index. In addition to the global models, sub-models with refined mesh are used to evaluate fracture index around the beam to column weldment. Modeling techniques are validated using data from previous experiments. Results show that as the perforation size increases, opening corners experience greater fracture index. This is while as the opening size increases the maximum observed fracture index at the connection welds decreases. However, the initiation of fracture at connection welds occurs at lower drift angles compared to opening corners. Finally, a probabilistic framework is applied to CVGM in order to account for the uncertainties existing in the prediction of ductile fracture and results are discussed.

Seismic performance of high strength reinforced concrete columns

  • Bechtoula, Hakim;Kono, Susumu;Watanabe, Fumio
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.697-716
    • /
    • 2009
  • This paper summarizes an experimental and analytical study on the seismic behavior of high strength reinforced concrete columns under cyclic loading. In total six cantilever columns with different sizes and concrete compressive strengths were tested. Three columns, small size, had a $325{\times}325$ mm cross section and the three other columns, medium size, were $520{\times}520$ mm. Concrete compressive strength was 80, 130 and 180 MPa. All specimens were designed in accordance with the Japanese design guidelines. The tests demonstrated that, for specimens made of 180 MPa concrete compressive strength, spalling of cover concrete was very brittle followed by a significant decrease in strength. Curvature was much important for the small size than for the medium size columns. Concrete compressive strength had no effect on the curvature distribution for a drift varying between -2% and +2%. However, it had an effect on the drift corresponding to the peak moment and on the equivalent viscous damping variation. Simple equations are proposed for 1) evaluating the concrete Young's modulus for high strength concrete and for 2) evaluating the moment-drift envelope curves for the medium size columns knowing that of the small size columns. Experimental moment-drift and axial strain-drift histories were well predicted using a fiber model developed by the authors.

Seismic fragility assessment of isolated structures by using stochastic response database

  • Eem, Seung-Hyun;Jung, Hyung-Jo
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.389-398
    • /
    • 2018
  • The seismic isolation system makes a structure isolated from ground motions to protect the structure from seismic events. Seismic isolation techniques have been implemented in full-scale buildings and bridges because of their simplicity, economic effectiveness, inherent stability and reliability. As for the responses of an isolated structure due to seismic events, it is well known that the most uncertain aspects are the seismic loading itself and structural properties. Due to the randomness of earthquakes and uncertainty of structures, seismic response distributions of an isolated structure are needed when evaluating the seismic fragility assessment (or probabilistic seismic safety assessment) of an isolated structure. Seismic response time histories are useful and often essential elements in its design or evaluation stage. Thus, a large number of non-linear dynamic analyses should be performed to evaluate the seismic performance of an isolated structure. However, it is a monumental task to gather the design or evaluation information of the isolated structure from too many seismic analyses, which is impractical. In this paper, a new methodology that can evaluate the seismic fragility assessment of an isolated structure is proposed by using stochastic response database, which is a device that can estimate the seismic response distributions of an isolated structure without any seismic response analyses. The seismic fragility assessment of the isolated nuclear power plant is performed using the proposed methodology. The proposed methodology is able to evaluate the seismic performance of isolated structures effectively and reduce the computational efforts tremendously.

High Cycle Fatigue Damage under Multiaxial Random Loading through Dynamic Simulation for an Automotive Sub-Frame (동력학 시뮬레이션에 의한 다축 랜덤하중 하에서 자동차 서브프레임의 고 되풀이수 피로손상 평가)

  • Lee, Hak-Joo;Kang, Jae-Youn;Choi, Byung-Ick;Kim, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.946-953
    • /
    • 2003
  • A FEM-based analytical approach was used to evaluate the multiaxial high cycle fatigue damage of an automotive sub-frame. Elastic Multi Body Simulation (MBS) has been applied in order to determine the multiaxial load histories. The stresses due to these loads have been given by FE computation. These results have been used as the input for the multiaxial fatigue analysis. For the assessment of multiaxial high cycle fatigue damage, the signed von Mises, the signed Tresca, the absolute maximum principal stress and critical plane methods have been employed. In addition, the biaxiality ratio, a$\sub$e/, the absolute maximum principal stress, $\sigma$$\sub$p/ and the angle, $\phi$$\sub$P/, between $\sigma$$\sub$1/ and the local x-axis, have been calculated to evaluate the stress state at each node.

Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model

  • Hosseini, Seyed Mahmoud;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.255-271
    • /
    • 2018
  • This paper deals with the transient dynamic analysis and elastic wave propagation in a functionally graded graphene platelets (FGGPLs)-reinforced composite thick hollow cylinder, which is subjected to shock loading. A micromechanical model based on the Halpin-Tsai model and rule of mixture is modified for nonlinear functionally graded distributions of graphene platelets (GPLs) in polymer matrix of composites. The governing equations are derived for an axisymmetric FGGPLs-reinforced composite cylinder with a finite length and then solved using a hybrid meshless method based on the generalized finite difference (GFD) and Newmark finite difference methods. A numerical time discretization is performed for the dynamic problem using the Newmark method. The dynamic behaviors of the displacements and stresses are obtained and discussed in detail using the modified micromechanical model and meshless GFD method. The effects of the reinforcement of the composite cylinder by GPLs on the elastic wave propagations in both displacement and stress fields are obtained for various parameters. It is concluded that the proposed micromechanical model and also the meshless GFD method have a high capability to simulate the composite structures under shock loadings, which are reinforced by FGGPLs. It is shown that the modified micromechanical model and solution technique based on the meshless GFD method are accurate. Also, the time histories of the field variables are shown for various parameters.

Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy (판재의 이방성을 고려한 연성파단모델 개발)

  • Park, N.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2016
  • This paper is concerned with modeling of a ductile fracture criterion for sheet metal considering anisotropy to predict the sudden fracture of advanced high strength steel (AHSS) sheets during complicated forming processes. The Lou−Huh ductile fracture criterion is modified using the Hill’s 48 anisotropic plastic potential instead of the von Mises isotropic plastic potential to take account of the influence of anisotropy on the equivalent plastic strain at the onset of fracture. To determine the coefficients of the model proposed, a two dimensional digital image correlation (2D-DIC) method is utilized to measure the strain histories on the surface of three different types of specimens during deformation. For the derivation of an anisotropic ductile fracture model, principal stresses (𝜎1,𝜎2, 𝜎3) are expressed in terms of the stress triaxiality, the Lode parameter, and the equivalent stress (𝜂𝐻, 𝐿,) based on the Hill’s 48 anisotropic plastic potential. The proposed anisotropic ductile fracture criterion was quantitatively evaluated according to various directions of the maximum principal stress. Fracture forming limit diagrams were also constructed to evaluate the forming limit in sheet metal forming of AHSS sheets over a wide range of loading conditions.

Fire Loading Analysis of Underground Box Structure with Considering of Concrete Spalling II : Load Carrying Capacity (박리를 고려한 지하박스구조물의 화재하중해석 II : 내하력)

  • Lee, Gye-Hee;Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.485-492
    • /
    • 2007
  • In this study, based on the temperature distribution and the spalling histories those obtained in the companion paper, the thermal stress and moments of underground box structure were estimated. Additionally, the ultimate sectional moment considering with the thermal nonlinearities of material were estimated and the load carrying capacity of underground box structure was also obtained. As results, the load carrying capacity of negative moment part was dominated by thermal moment that come from thermal gradient of the section. However, the load carrying capacity of the positive moment part was rules by the yield stress of rebar that exposed to the high temperature induced spalling phenomena.

Image-based structural dynamic displacement measurement using different multi-object tracking algorithms

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.935-956
    • /
    • 2016
  • With the help of advanced image acquisition and processing technology, the vision-based measurement methods have been broadly applied to implement the structural monitoring and condition identification of civil engineering structures. Many noncontact approaches enabled by different digital image processing algorithms are developed to overcome the problems in conventional structural dynamic displacement measurement. This paper presents three kinds of image processing algorithms for structural dynamic displacement measurement, i.e., the grayscale pattern matching (GPM) algorithm, the color pattern matching (CPM) algorithm, and the mean shift tracking (MST) algorithm. A vision-based system programmed with the three image processing algorithms is developed for multi-point structural dynamic displacement measurement. The dynamic displacement time histories of multiple vision points are simultaneously measured by the vision-based system and the magnetostrictive displacement sensor (MDS) during the laboratory shaking table tests of a three-story steel frame model. The comparative analysis results indicate that the developed vision-based system exhibits excellent performance in structural dynamic displacement measurement by use of the three different image processing algorithms. The field application experiments are also carried out on an arch bridge for the measurement of displacement influence lines during the loading tests to validate the effectiveness of the vision-based system.

Development of an integrated Web-based system with a pile load test database and pre-analyzed data

  • Chen, Yit-Jin;Liao, Ming-Ru;Lin, Shiu-Shin;Huang, Jen-Kai;Marcos, Maria Cecilia M.
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.37-53
    • /
    • 2014
  • A Web-based pile load test (WBPLT) system was developed and implemented in this study. Object-oriented and concept-based software design techniques were adopted to integrate the pile load test database into the system. A total of 673 case histories of pile load test were included in the database. The data consisted of drilled shaft and driven precast concrete pile axial load tests in drained, undrained, and gravel loading conditions as well as pre-analyzed data and back-calculated design parameters. Unified modeling language, a standard software design tool, was utilized to design the WBPLT system architecture with five major concept-based components. These components provide the static structure and dynamic behavior of system message flows in a visualized manner. The open-source Apache Web server is the building block of the WBPLT system, and PHP Web programming language implements the operation of the WBPLT components, particularly the automatic translation of user query into structured query language. A simple search and inexpensive query can be implemented through the Internet browser. The pile load test database is helpful, and data can be easily retrieved and utilized worldwide for research and advanced applications.