• Title/Summary/Keyword: loading head

Search Result 174, Processing Time 0.026 seconds

A Study on Lateral Loading the Field Test of Pile for Large Diameter Drilled Shaft Pile (대구경 현장타설말뚝에 대한 현장수평재하시험에 관한 연구)

  • Choi, Yong-Kyu;Lee, Min-Hee;Lee, Chung-Sook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.33-39
    • /
    • 2004
  • Most of pile foundations are a condition of fixed head on pile, but lateral loading test of pile have performed to free head on generally. This study performed field lateral loading test accompanying lateral displacement by depth of pile for two cases(fixed head and free head) and analyzed lateral behavior of large drilled shaft. Furthermore compared theoretical equation with result of lateral loading test.

  • PDF

A Study on Static Lateral Loading Test for Large Diameter Drilled Shaft Pile Considering the Pile Lead Fixity Conditions (말뚝두부구속조건을 고려한 대구경 현장타설말뚝에 대한 수평정재하시험 연구)

  • Lee, Min-Hee;Hwang, Geun-Bae;Jung, Sung-Min;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.36-43
    • /
    • 2004
  • Most of pile foundations are fixed head condition, but lateral loading test for pile is performed under free head condition generally In this study, a lateral loading test for a large diameter drilled shaft was performed under the fixed pile head and the free pile head condition, where lateral displacement along the pile depth was measure. Test results and theoretical values were compared and analyzed.

  • PDF

Analysis of Optical Flying Head Dynamics for Near-field Receding System (근거리장 광부상 헤드의 Loading 동특성 해석)

  • 은길수;김노유
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.175-180
    • /
    • 2002
  • Loading/Unloading(L/UL) mechanism has been considered to be an alternative to contact start-stop(CSS) mechanism which eliminates stiction and wear associated with frequent start and stop process. It has other advantages including increased areal density due to lower flying height, reduced power consumption, and improved shock resistance. In order for L/UL to be Implemented in Near-field recording system properly, dynamics of optical flying head must be understood and optimized. In this paper the dynamic characteristics during loading process is analyzed numerically to investigate the effect of design parameters such as loading speed. slider shape, and initia conditions on the dynamic reponses of flying head..

  • PDF

A Study on the Leading/Unloading Time Prediction of the Ballast Tank (밸러스트 탱크의 급수/배수 시간 예측에 관한 연구)

  • Kim H. I.;Kim M. U.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.33-36
    • /
    • 2004
  • The ballast tank of a ship is a system that realizes the required shipping condition and controls the draft of a ship. The loading/unloading of the ballast tank is frequently operated during navigation and the accurate prediction of the loading/unloading time is very important. A numerical algorithm that predicts the loading/unloading time of the ballast tank has been developed and applied to the prediction of the loading/unloading time of the ballast tank with various piping systems. This algorithm can be useful in optimizing the ballast tank system in early design stage.

  • PDF

Non Linear Finite Element Analyses of Ceramic/Ceramic Pairs of Total Hip Replacements Using High Trauma-Like Loads (고응력 외상에의한 고관절용 세라믹/세라믹 쌍의 비선형 유한요소법 분석)

  • Karyo, Daniel;Lee, Su-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.179-180
    • /
    • 2005
  • Non linear finite element analyses were performed in various configurations of stem-ball head. High stresses were found for the cases when the stem tended to penetrate less into the ball head. An upgraded design of the cone may improve the loading of the ball head to resist trauma-like loading more effectively than manipulating the ball diameter. When the surgeon needs to use small ball heads (i.e. 22 mm), the use of zirconia seems to be appropriate also. After simulating a trauma like loading of the materials, it was found that the deepness of the cone to locate the stem is of major importance for the performance of the device. Further work, considering more sizes for the cone design should be performed in order to determine an optimal depth for the cone in relation to the diameter of the ball head. Also the simulation of contacts pairs including polyethylene and CoCr is important for further research.

  • PDF

Application of Headed Bars with Small Head in Exterior Beam-Column Joints Subjected to Reversed Cyclic Loads (반복하중을 받는 외부 보-기둥 접합부에서 작은 헤드를 사용한 Headed Bar적용)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.411-420
    • /
    • 2007
  • The applicability of headed bars in exterior beam-column joints under reversed cyclic loading was investigated. A total of ten pullout tests were first performed to examine pullout behavior of headed bars subjected to monotonic and cyclic loading with test variables such as connection type between head and bar stem (weld or no weld), loading methods (monotonic or cyclic loading), and head shape (small or large circular head and square head). Two full-scale beam-column joint tests were then performed to compare the structural behavior of exterior beam-column joints constructed using two different reinforcement details: i.e. $90^{\circ}$ standard hooks and headed bars. Both joints were designed following the recommendations of ACI-ASCE Committee 352 for Type 2 performance: i.e. the connection is required to dissipate energy through reversals of deformation into inelastic range. The pullout test results revealed that welded head to the stem did not necessarily result in increased pullout strength when compared to non-welded head. Relatively large circular head resulted in higher peak load than smaller circular and square head. Both beam-column joints with conventional $90^{\circ}$ hooks and headed bars behaved similarly in terms of crack development, hysteresis curves, and peak strengths. The joint using the headed bars showed better overall structural performance in terms of ductility, deformation capacity, and energy dissipation. These experimental results demonstrate that the headed bars using relatively small head can be properly designed far use in external beam-column joint.

Effect of hydraulic lining-ground interaction on subsea tunnels (라이닝-지반 수리상호작용이 해저터널에 미치는 영향)

  • Shin, Jong-Ho;Park, Dong-In;Joo, Eun-Jung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • One of the most important design concerns for undersea tunnels is to establish design water load and flow rate. These are greatly dependent on the hydraulic factors such as water head, cover depth, hydraulic boundary conditions. In this paper, the influence of the hydraulic design factors on the ground loading and the inflow rate was investigated using the coupled finite element method. A horse shoe-shaped tunnel constructed 30 m below sea bottom was adopted to evaluate the water head effect considering various water depth for varying hydraulic conditions and relative permeability between lining and ground. The effect of cover depth was analysed for varying cover depth with the water depth of 60 m. The results were considered in terms of pore water pressure, ground loading and flow rate. Ground loading increases with an increase in water head and cover depth without depending on hydraulic boundary conditions. This points out that in leaking tunnels an increase in water depth increases seepage force which consequently increases ground loading. Furthermore, it is identified that an increase in water head and cover depth increases the rate of inflow and a decrease in the permeability ratio reduces the rate of inflow considerably.

  • PDF

Characteristiis of Dynamic Response in the Human Head and Neck to Implusive Loading (충격력에 대한 인체의 머리와 목의 동력학적 응답특성)

  • 김영은;김정훈
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.491-498
    • /
    • 1995
  • A numerical human head/neck model was constructed for analyzing the implication in decleration injuries. This model consists of nine rigid bodies representing the head, cervical vertebrae C1-C7, and T1. These rigid bodies were connected by intervertebral disks described by massless beam elements. Muscles and ligaments were also incoperated in the model represented by nonlinear spring and viscoblastic element respectively Agreement of the analytical kinematic response with the results of experimental data from a volunteer run was satisfactory. Moreover, possible injury estimation from the calculated moment, force variations in the disc, and force variation in ligaments matched well with clinical observations.

  • PDF

Analysis of Dynamic Behavior of a Single Pile in Dry Sand by 1g Shaking Table Tests (1g 진동대 실험을 통한 건조사질토에 근입된 단독말뚝의 동적 거동 분석)

  • Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.17-28
    • /
    • 2017
  • This paper presents the investigation of dynamic behavior of a single pile in dry sand based on 1g shaking table tests. The natural frequency of soil-pile system was measured, and then a range of loading frequency was determined based on the natural frequency. Additionally, the studies were performed by controlling loading accelerations, pile head mass and connectivity conditions between pile and cap. Based on the results obtained, relatively larger pile head displacement and bending moment occur when the loading frequency is larger than the natural frequency of soil-pile system. However, the slope of the p-y curve is smaller in the similar loading frequency. Also, it was found that inertia force like input acceleration and pile head mass, and relation of the natural frequency of soil-pile system and input frequency have a great influence on the slope of dynamic p-y curve, while pile head conditions don't.

Stress Analysis of the Hard Disk with Overcoating Layer under the Contact with Head (헤드와의 접촉에 의한 오버코팅층을 포함한 하드 디스크의 응력 해석)

  • Lee, Gang-Yong;Yang, Ji-Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.946-954
    • /
    • 2000
  • The purposes of the paper are to calculate stresses and strains of the disk with overcoating layer rotating quickly under normal loading and shear loading by contacting with head and to present material properties preventing the delamination between the disk and overcoating layer. The hard disk is modeled as two-layered disk composed with overcoating layer and the rest layers and the loading onto the disk is assumed axisymmetric. Solutions to equilibrium equations and compatibility equations are derived with the form of polynimial and Bessel function and coefficients satisfying boundary conditions are obtained differently for the case of body force, normal force and shear force. The risk of delamination are investigated for us to calculate the differences of strains at the interface between the disk and overcoating layer and the material properties preventing delamination are presented by calculating the differences of strains according to Young's modulus and density of disk.