• Title/Summary/Keyword: loading coil

Search Result 49, Processing Time 0.024 seconds

Effects of drilling process in stability of micro-implants used for the orthodontic anchorage (고정원을 위한 micro-implant 매식시 drilling 유무에 따른 안정성에 관한 연구)

  • Chang, Young-Il;Kim, Jong-Wan
    • The korean journal of orthodontics
    • /
    • v.32 no.2 s.91
    • /
    • pp.107-115
    • /
    • 2002
  • The aim of this study was to investigate experimentally the mechanical and histological effect of drilling process on the stability of micro-implant used for the orthodontic anchorage. For this purpose, 32 micro-implants(Osas$^{(R)}$, Epoch medical, ${\phi}$1.6 mm) were inserted into maxilla, mandible and palate in two beagle dogs. 16 micro-implants(8 per dog) were inserted after drilling with pilot drilling bur (drill method group). 16 micro-implants(8 per dog) were inserted without drilling (drill-free method group). After 1 week, micro-implants were loaded by means of Ni-Ti coil spring (Ni-Ti springs-extension$^{(R)}$, Ormco) with 200-300 gm force. Following 12 weeks, the micro-implants and the surrounding bone were removed. Before sacrifice, the mobilities were tested with Periotest$^{(R)}$(Siemens). Undecalcified serial sections with the long axis were made and the histologic evaluations were done. The results of this study were as follow ; 1. The osseointegration was found in both of drill-free method group and drill method group 2. Two of drill method group and one of drill-free method group in 32 micro-implants were lost after loading. 3. The mobilities of drill-free method group were less than drill method group 4. The bone contact on surface of micro-implants in drill-free method group was more than drill method group but there was no significant difference between groups. 5. The bone density in threads of micro-implants in drill-free method group was more than drill method group and there was significant difference between groups. These results suggest that drill-free method in insertion of micro-implants is superior to drill method on the stabilities, bone remodeling and osseointegrations under early loading.

A Design and Performance Evaluation of Semi-active MR Damper for the Smart Control of Construction Structures (건설구조물의 스마트 제어를 위한 준능동 MR 감쇠기의 설계 및 성능평가)

  • Heo, Gwang-Hee;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.165-171
    • /
    • 2009
  • This research developed two semi-active MR dampers whose gaps in the orifice area were different from each other, and evaluated their damping performance by loading tests. The Damping performance of MR dampers characteristically depends on various factors like their material and mechanical ones, but most importantly on the size of gap in the orifice area. For this research, we designed the orifice gaps of two dampers as each 1.0mm and 2.0mm, both with the 80mm outer diameter of the orifice. We also designed two loading test sets with different input currents, and acquired different control ability from them. The acquired test results were analyzed and evaluated with their maximum and minimum damping force and also their dynamic range from the force-displacement hysteresis loops and the force-input current relationship curve. This research clearly proved how the damping performance of control devices depends on the gap effect, and also presented a possibility that the two dampers developed in this research could be used for the smart control of construction structures by effectively adapting the input current and the number of coil turns.

Kinetic Study on the Immobilized Penicillin Amidase in a Differential Column Reactor (Differential column reactor에 있어서 고정화페니실린 아미다제의 반응속도론에 관한 연구)

  • Park, Jong-Moon;Park, Cha-Yong;Seong, Baik-Lin;Han, Moon-Hi
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.3
    • /
    • pp.165-171
    • /
    • 1981
  • The penicillin amidase from Escherichia coli (ATCC 9637) was immobilized by entrappment in gelatin and DEAE-cellulose mixture cross-linked with glutaraldehyde, and the kinetics in a differential column reactor was studied. The optimal operating condition of a differential reactor was reasonably met when the enzyme loading was 1g, and 30 mM substrate solution in 0.1 M phosphate buffer (pH 8.0) was fed at flow rate 4$m\ell$/min and 4$0^{\circ}C$. The optimal pH and temperature were found to be 8.0 and 55$^{\circ}C$, respectively. The Michaelis-Menten constant was 4.8 mM while the maximum velocity was 308 units/g of the immobilized enzyme under the condition of the differential reactor. The effect of substrate inhibition disappeared in the immobilized enzyme preparation. The differential reactor was proved to be good for studying the true kinetics since the pH drop and the external diffusional resistance could be eliminated.

  • PDF

The Development of Automatic Grease Lubricator Driven by Gear Mechanism with Controlled Operating Time (주유시간 조절이 가능한 기어 메커니즘 구동방식의 자동그리스주유기 개발)

  • Wang, Duck-Hyun;Lee, Kyu-Young;Lee, Sang-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.199-206
    • /
    • 2006
  • Automatic grease lubricator is equipment that provides adequate amount of fresh grease constantly to the shaft and the bearings of machines. It minimizes the friction heat and reduces the friction loss of machines to the least. This research is to develop automatic grease lubricator by gear driven mechanism with controlled operation time. The ultimate design of this equipment is to lubricate an adequate amount of grease by a simple switch clicking according to the advanced set cycle. The backlash of the gear was minimized to increase the output power. To increase the power of gear mechanism, the binding frequency and the thickness of the coil were changed. To control the rotating cycles of the main shaft according to its set numbers, different resistance and chips were used to design the circuit to controls electrical signals with pulse. The body of the lubricator was analyzed by stress analysis with different constructed angle. The stress analysis for differing loading pressures applied to the exterior body of grease lubricator due to the setup angle, was found that the maximum stress was distributed over the outlet part where the grease lubricator suddenly narrowed contracts. Digital mock-up was analyzed and the rapid prototyping(RP) trial products were tested with PCB circuit and grease. The evaluation of the outlet capacity for RP trial products was conducted, because the friction caused by the outlet on the wall surface was an important factor in the operation of the equipment. Finally, the finishing process was applied to decrease the roughness of the surface to a comparable level and was able to test the performance examination for the product.

Development of a Large Capacity Hybrid-Type Linear Motor Damper for the vibration Control of Building Structures (건축 구조물의 진동 제어용 하이브리드형 대용량 리니어 모터 댐퍼의 개발)

  • Jeong, Sang-Seop;Jang, Seok-Myeong;Lee, Seong-Ho;Yun, In-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.601-611
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and sqring is one aproach to safeguarding the structure against excessive vibrations. In this paper, a large capacity hybrid-type linear motor damper(LMD) was designed and fabricated for the application to the vibration control of a large building structure model. It has been designed to be able to move the damper mass, 1,500 kg up to ${\pm}250mm$ strokes at the first mode natural frequency of the building structure model, ${\pm}0.51Hz$. Linear motor is consisted of the fixed coil and the movable NdFeB permanent magnets field part. The PM field part composed magnet modules and iron yoke, is the damper mass itself, 1500kg. LMD therefore has a simplified structure and requires a few elements in the driving system, being compared with a rotary motor damper and a hydraulic damper. However, the manufacture of large PM linear actuator is difficult because of the limit of PM size and the attraction and repulsion at the assembly of PM. Therefore, large damper system is manufactured and tested for dynamic characteristics and frequency response.

Design and Trend Analysis According to the Application Field of Monopole Antenna with Sleeve Structure (슬리브 구조를 갖는 모노폴 안테나의 활용분야에 따른 설계와 동향분석)

  • Kang, Sang-Won;Byeon, Mi-Kyeong;Lee, Shin-Hee;Choe, Gwang-Je
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.135-141
    • /
    • 2020
  • This paper summarizes the data of a monopole antenna with a sleeve structure that can be applied in various ways. Sleeve monopole antennas have broadband characteristics and are used for multi-frequency applications. The sleeve monopole antenna is composed of a vertical conductor, which is a radiator, and a sleeve having the same structure as a coaxial cable. The sleeve acts as a radiator and an open stub. The length of the sleeve should be 1/3~2/3 of the total length of the antenna. A monopole antenna having a sleeve structure is applicable to a vehicle wiper antenna. In addition, the case of applying this antenna to a broadband sleeve antenna using a loading coil, a broadband printed sleeve monopole antenna for an ISM band, a gap sleeve and a double sleeve, and a UWB planar monopole antenna using half cutting was summarized and analyzed in terms of structure and broadband.

Fiber Based Supercapacitors for Wearable Application (웨어러블 응용을 위한 섬유형 슈퍼커패시터)

  • Jae Myeong Lee;Wonkyeong Son;Juwan Kim;Jun Ho Noh;Myoungeun Oh;Jin Hyeong Choi;Changsoon Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.303-325
    • /
    • 2023
  • Flexible fiber- or yarn-based one-dimensional (1-D) energy storage devices are essential for developing wearable electronics and have thus attracted considerable attention in various fields including ubiquitous healthcare (U-healthcare) systems and textile platforms. 1-D supercapacitors (SCs), in particular, are recognized as one of the most promising candidates to power wearable electronics due to their unique energy storage and high adaptability for the human body. They can be woven into textiles or effectively designed into diverse architectures for practical use in day-to-day life. This review summarizes recent important development and advances in fiber-based supercapacitors, concerning the active materials, fiber configuration, and applications. Active materials intended to enhance energy storage capability including carbon nanomaterials, metal oxides, and conductive polymers, are first discussed. With their loading methods for fiber electrodes, a summary of the four main types of fiber SCs (e.g., coil, supercoil, buckle, and hybrid structures) is then provided, followed by demonstrations of some practical applications including wearability and power supplies. Finally, the current challenges and perspectives in this field are made for future works.

Single Center Experience of the Balloon-Stent Technique for the Treatment of Unruptured Distal Internal Carotid Artery Aneurysms: Sharing a Simple and Reliable Tip to Use Scepter-Atlas Combination (원위내경동맥에 위치한 비파열성 동맥류의 치료에 있어 풍선-스텐트 테크닉에 대한 단일기관의 경험: Scepter-Atlas 조합을 사용하기 위한 간단하지만 확실한 방법)

  • Yu-jung Park;Jieun Roh;Seung Kug Baik;Jeong A Yeom;Chul-Hoo Kang;Hee Seok Jeong;Sang Won Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.5
    • /
    • pp.1258-1273
    • /
    • 2021
  • Purpose The balloon-stent technique (BST) has certain strengths as an assisted technique for the treatment of complex aneurysms. After Atlas release, the BST can be executed without an exchange maneuver of the balloon to the stent-delivery catheter. The purpose of this article is to share our experience with the BST using the Scepter-Atlas combination. Materials and Methods Device inspection led us to a simple method to avoid failure in loading Atlas to the Scepter. From March 2018 to December 2019, 57 unruptured distal internal carotid artery (dICA) aneurysms were treated with coil embolization; among which, 25 aneurysms in 23 patients were treated with BST. Clinical and angiographic data were retrospectively collected and reviewed. Results The technical success rate of the Scepter-Atlas combination increased from 50% to 100% after careful inspection. BST angiographic results were comparable to the stent-assisted coil (SAC) group treated during the immediately post-embolization same period (modified Raymond-Roy classification [MRRC] 1 & 2 84% in BST, 96.3% in SAC) and during short-term follow-up (MRRC 1 & 2 95.8% in BST, 88.4% in SAC). A small number of patients showed periprocedural complications, but none had clinical consequences. Conclusion BST using the Scepter-Atlas combination can provide an effective and safe method for the treatment of dICA aneurysms. Scepters can be used as delivery catheters for Atlas.

Study on Effect of Anchor Bolt by Thermal Expansion of Sulfur Storage Tank under High Temperature (고온을 받는 유황저장탱크의 열팽창에 의한 앵커볼트 영향에 관한 연구)

  • Jung, Wook-Hwan;Kim, Jeong-Soo;Kim, Tae-Min;Kim, Moon-Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.483-490
    • /
    • 2016
  • In plant industry, sulfur storage tank is made of steel and annular plate is connected with concrete foundation of ring wall type by anchor bolt. Due to keep sulfur at high temperature in tank by coil, sulfur storage tank is expanded larger than another tank stores fluid at room temperature. Generally, structural design of tank foundation is performed analysis with loading of temperature gradient between inner and outer surface, this method can't consider the phenomenon that load is intensively transferred to concrete foundation at anchor bolt. This means that temperature load is underestimated and causes crack of concrete near anchor bolt. In this study, evaluation formula considering temperature load transfer mechanism through anchor bolt is proposed and load acting on concrete foundation is rationally decided. For this purpose, it is analyzed variation of thermal load per various anchor bolt number using finite element model including tank annular plate and anchor bolt. Solution is proposed as specified term combining result of analysis and theoretical solution for evaluating load transferred by anchor bolt. For confirmation of validation of proposed formula, it is applied in design of sulfur storage tank at plant site, it shows that the formula can be practically applied.