• Title/Summary/Keyword: loading and unloading effect

Search Result 103, Processing Time 0.026 seconds

The mechanical properties of rock salt under cyclic loading-unloading experiments

  • Chen, Jie;Du, Chao;Jiang, Deyi;Fan, Jinyang;He, Yi
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.325-334
    • /
    • 2016
  • Rock salt is a near-perfect material for gas storage repositories due to its excellent ductility and low permeability. Gas storage in rock salt layers during gas injection and gas production causes the stress redistribution surrounding the cavity. The triaxial cyclic loading and unloading tests for rock salt were performed in this paper. The elastic-plastic deformation behaviour of rock salt under cyclic loading was observed. Rock salt experienced strain hardening during the initial loading, and the irreversible deformation was large under low stress station, meanwhile the residual stress became larger along with the increase of deviatoric stress. Confining pressure had a significant effect on the unloading modulus for the variation of mechanical parameters. Based on the theory of elastic-plastic damage mechanics, the evolution of damage during cyclic loading and unloading under various confining pressure was described.

Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading

  • Guo, Z.Q.;Sluys, L.J.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.317-328
    • /
    • 2008
  • When carbon-filled rubber specimens are subjected to cyclic loading, they do not return to their initial state after loading and subsequent unloading, but exhibit a residual strain or permanent deformation. We propose a specific form of the pseudo-elastic energy function to represent cyclic loading for incompressible, isotropic materials with stress softening and residual strain. The essence of the pseudo-elasticity theory is that material behaviour in the primary loading path is described by a common elastic strain energy function, and in unloading, reloading or secondary unloading paths by a different strain energy function. The switch between strain energy functions is controlled by the incorporation of a damage variable into the strain energy function. An extra term is added to describe the permanent deformation. The finite element implementation of the proposed model is presented in this paper. All parameters in the proposed model and elastic law can be easily estimated based on experimental data. The numerical analyses show that the results are in good agreement with experimental data.

The Effect of Loading Waveform on the High Temperature Fatigue Crack Propagation in P92 and STS 316L Steel (P92와 STS 316L강의 고온 피로 균열 성장에 미치는 하중 파형의 영향)

  • 김수영;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.136-140
    • /
    • 2002
  • High temperature fatigue crack growth behavior of P92 and STS 316L steel were investigated under four load conditions using CT type specimens. Loading and unloading times for the low wave forms were combinations of 1 sec. and 50 sec., which were two symmetric wave forms and two unsymmetric wave forms. Their behaviors are characterized using ΔK parameter. In STS 316L, Crack growth rate generally increases as frequency decreases. However, sensitivity of the loading rate to crack growth rate was fecund to be far greater than that of the unloading time. It is because as loading time increases, creep occurs at crack tip causing the crack growth rate to increase. However creep does not occur at the crack tip even if the unloading time is increased. In P92 steel, crack growth rate showed same behavior as in STS 316L. But the increase in loading or unloading time made almost no difference in crack growth rate, suggesting that no significant creep occurs in P92 steel even though loading time increases. After conducting high temperature tensile tests and comparing high temperature fatigue crack growth rates under various wave forms, it was proved that P92 steel has not only good high temperature properties but also improved, better high temperature fatigue properties than STS 316L.

The Effect of Cyclic Loading History on the Creep of $SiC_f/Si_3N_4$ Fiber-reinforced Composite (사이클 하중이력이 $SiC_f/Si_3N_4섬유강화 복합재료의 크리프에 미치는 영향)

  • 박용환
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.35-40
    • /
    • 2000
  • The influence of cyclic loading history on the creep behavior of the 30 vol% hot-pressed $SiC_f/Si_3N_4copmposite was experimentally investigated at $1200^{\circ}C$. The duration of loading/unloading had great effects on the creep behaviors. The short term duration cyclic loading history test results showed significant reduction in the primary and steady-state creep rates. For example, 300sec loading/300sec unloading history resulted in 70% lower steady-state creep rate than that of the continuous loading. However the long term duration cyclic loading history test results showed little change in creep rates compared to those of the continuous one. The reason for the significant change in the short term duration cycles was estimated due to the change in the stress redistribution between the fiber and matrix during the creep recovery in the primary stage.

  • PDF

Prediction of Shape Recovery for Ni-Ti SMA Wire after Drawing (Ni-Ti 형상기억합금 선재의 인발 공정 후 형상회복 예측에 관한 연구)

  • Kim, S.H.;Lee, K.H.;Lee, S.B.;Yeom, J.T.;Park, C.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.470-476
    • /
    • 2013
  • The aim of the current study was to predict shape recovery behavior of Ni-Ti shape memory alloy (SMA) wire after loading-unloading and after wire drawing. The superelasticity of SMA was analyzed by a hyper-elastic model for the Mullins effect using ABAQUS. Firstly, tensile tests and loading-unloading tests of the Ni-Ti SMA wire with a diameter 1.0 mm were performed using an MTS servo-hydraulic tester. The parameters for the Mullins effect were computed by ABAQUS based on curve-fitting of the loading-unloading test data. The proposed FE-model predicted the shape recovery of Ni-Ti SMA after wire drawing. Finally, the effectiveness of the model was verified by drawing experiments. The wire drawing experiments using the Ni-Ti SMA were conducted on a drawing machine(1ton, 50mm/s). In order to evaluate the shape recovery of Ni-Ti SMA, the drawn wires are annealed for 30min at $450^{\circ}C$.

J-R Curve Characterization by Load Ratio Analysis and Unloading Compliance Method for SA508 C-3 steel (SA508-3재의 제하컴플라이언스법과 하중비해석을 이용한 파괴저항곡선 평가)

  • 임만배;차귀준;윤한기;안원기
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.65-75
    • /
    • 1998
  • The fracture resistance curve is one of most important and design techniques employed in nuclear pressure vessel structures. This study is to evaluate the J-R curve characteristics for the SA508C-3 by the unloading compliance method and load rato analysis. The effect of strain aging for the exponential correlation of the J-R curve in this metal are investigated at room temperature, 20$0^{\circ}C$ and 30$0^{\circ}C$. The load ratio analysis method can evaluate the J-R curve by using the simple tension load-displacement curve only without the repeat of the unloading and loading. Therefore, the analysis by the proposed load ratio method has a merit, in comparison with the unloading compliance method, which can measure the crack length without the precision measurement equipment.

  • PDF

Damage characterization of hard-brittle rocks under cyclic loading based on energy dissipation and acoustic emission characteristics

  • Li, Cheng J.;Lou, Pei J.;Xu, Ying
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.365-373
    • /
    • 2022
  • In order to investigate the damage evolution law of rock specimens under cyclic loading, cyclic loading tests under constant loads with different amplitudes were carried out on limestone specimens with high strength and brittleness values using acoustic emission (AE) technology and the energy evolution and AE characteristics were evaluated. Based on dissipated energy density and AE counts, the damage variable of specimen was characterized and two damage evolution processes were analyzed and compared. The obtained results showed that the change of AE counts was closely related to radial deformation. Higher cyclic loading values result in more significant radial strain of limestone specimen and larger accumulative AE counts of cyclic loading segment, which indicated Felicity effect. Regarding dissipated energy density, the damage of limestone specimen was defined without considering the influence of radial deformation, which made the damage value of cyclic loading segment higher at lower amplitude loads. The damage of cyclic loading segment was increased with the magnitude of load. When dissipated energy density was applied to define damage, the damage value at unloading segment was smaller than that of AE counts. Under higher cyclic loading values, rocks show obvious damage during both loading and unloading processes. Therefore, during deep rock excavation, the damages caused by the deformation recovery of unloading rocks could not be ignored when considering the damage caused by abutment pressure.

A Fundamental Study on the Fracture Mechanism of Steel Plates under Completely Alternating Load (완전교번하중하(完全交番荷重下)에서의 강판(鋼板)의 파괴기구(破壞機構)에 관한 기차적(基磋的) 연구(研究))

  • Chang, Dong Il;Chung, Yeong Wha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.1-13
    • /
    • 1982
  • Transition process of plastic region. displacements, stresses and strains ahead the flaw tips were analysed by the finite element method on the steel plate with the circular hole and the one with the elliptical hole under completely alternating load (repetition of tensile loading, unloading and compressive loading). As the results, the followings were obtained. Transition process of elastic failure (yielding) region was estimated. From this the tendency was confirmed that the fracture would be initiated from ahead the flaw tip, and propagated along the $45^{\circ}$ direction. The fundamental data available in estimating the stress intensity factor that was considered as the core in analysing the fracture mechanism of steel plates were obtained. It was indicated that when unloading after tension the effect of compressive loading, and even the compressive reyield, was occured ahead the flaw tip. Similarly it was indicated that when unloading after compression the effect of tensile loading, and even the tensile reyield, was occured ahead the flaw tip. It was considered that these phenomena were occured because the unloading effect was constrained by the residual strains when unloading. It was considered that the fatigue phenomenon was occured ahead, the flaw tip by repetition of tensile yield, the above compressive reyield, compressive yeild and the above tensile reyield. In addition, the tendency was confirmed that the fracture ahead the flaw tip was occured as the flaw was changed from the circular hole to the elliptical hole and became to be the crack lastly.

  • PDF

On the Study of the Production Improvement of Container Cranes (컨테이너 크레인의 생산성 향상에 관한 연구)

  • Son, J.G.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.113-118
    • /
    • 1998
  • The Container crane is mainly used in the harbor. But in spite of this wide use, it is a fact that there are still areas for automation, concerning the operator and the control system. If the encoding function is enhanced, then control effect can be increased to some extent. Since the distance from the hoist to the trolley cam be measured, the moving distance from the loading and unloading can be minimized. If this is applied to the real system, hazard elements can be eliminated and in given time since more unloading can be done, congestion can be reduced.

  • PDF

Pseudo-static solution of active earth pressure against relief shelf retaining wall rotating around heel

  • Yun Que;Jisong Zhang;Chengcheng Long;Fuquan Chen
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.87-104
    • /
    • 2024
  • In practical engineering, the design process for most retaining walls necessitates careful consideration of seismic resistance. The prevention of retaining wall overturning is of paramount importance, especially in cases where the foundation's bearing capacity is limited. To research the seismic active earth pressure (ES) of a relieving retaining wall rotating around base (RB), the shear dissipation graphs across various operating conditions are analyzed by using Optum software, and the earth pressure in each region was derived by the inclined strip method combined with the limit equilibrium method. By observing shear dissipation graphs across various operating conditions, the distribution law of each sliding surface is summarized, and three typical failure modes are obtained. The corresponding calculation model was established. Then the resultant force and its action point were obtained. By comparing the theoretical and numerical solutions with the previous studies, the correctness of the derived formula is proved. The variation of earth pressure distribution and resultant force under seismic acceleration are studied. The unloading plate's position, the wall heel's length, and seismic acceleration will weaken the unloading effect. On the contrary, the length of the unloading plate and the friction angle of the filling will strengthen the unloading effect. The derived formula proposed in this study demonstrates a remarkable level of accuracy under both static and seismic loading conditions. Additionally, it serves as a valuable design reference for the prevention of overturning in relieving retaining walls.