• Title/Summary/Keyword: loading BOD

Search Result 237, Processing Time 0.024 seconds

Water Purification Characteristics of Sedimentation Basin for Agricultural Water Quality Improvement (농업용수 수질개선을 위한 침강지의 수질정화 특성)

  • Kim, Hyungjoong;Kim, Donghwan
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • A sedimentation basin for agricultural water quality improvement was researched to analyze the water quality purification characteristics. The sedimentation basin constructed at the inlet of Gamdon reservoir in Muan-gun, Jeollanam-do was selected as the research field of this study. The surface area of the sedimentation basin is $34,000m^2$, volume is $122,000m^3$, and hydraulic retention time is 0.3hr~7.3day. The average influent loading of SS was 156.6kg-SS/d, and the effluent loading was 67.5kg-SS/d with the average removal rate of 56.9%. The average influent loadings of BOD and COD were 33.0kg-BOD/d and 60.3kg-COD/d respectively, and the effluent loadings were 26.4kg-BOD/d and 48.6kg-COD/d with the average removal rate of 20.1% and 19.3% respectively. Therefore, the results of this study show that a sedimentation basin can purify SS and organic matters. The average influent loadings of T-N and T-P were 28.7kg-TN/d and 2.97kg-TP/d respectively, and the effluent loadings were 16.3kg-TN/d and 1.41kg-TP/d with the average removal rate of 43.0% and 52.6% respectively. In conclusion, the overall results of this study show that a sedimentation basin is a feasible alternative to purify organic matters and nutrients.

  • PDF

A Study on the Characteristics of Pollutant Loads in Kamak Bay Watershed (駕莫灣 流域의 汚染負荷 特性에 관한 硏究)

  • 이대인;조현서
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.945-954
    • /
    • 2002
  • The objective okgf this study is understanding and evaluation of temporal and spatial variation of pollutant loads by input sources for water quality management in Kamak Bay. Flow rate of rivers and ditches ranges from about $2,592-63,072m^3/d$ in October to $864-55,296m^3/d$ in January. In particular, the R2 predominated flow rate among input sources. Total COD, BOD, DIN and DIP loadings in January were about 896kg/d, 718kg/d, 2,152kg/d, and 154kg/d, respectively, which exceeded those of October. Lower POC/TOC levels are estimated in R2, and also in October. Temporal variation of pollutant loads were closely related to the human activity. Total discharging loadings of BOD, TN and TP by unit loading estimation were 4,993.0kg/d, 2,558.7kg/d, and 289.2kg/d, respectively, and were mainly affected by the population. Runoff ratio of BOD was about 0.14 in January Mean $NH_4^+_-N$ and $PO_4\;^{3-}-P$ loadings from sediment were 16.23mg/$m^2$/d and 7.26mg/$m^2$/d, respectively. For the improvement of water quality in this area, not only pollutant loads of rivers and ditches but also benthic flux from sediment should be reduced within the limits of the environmental capacity.

Wetland Performance for Wastewater Treatment in Growing and Winter Seasons (생장기와 동절기의 인공습지 오수처리 성능)

  • 윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.37-46
    • /
    • 1999
  • Field experimnet of constructed wetland for rural wastewater treatment was performed from July 1998 to April 1999 including winter to examine the seasonal effect on the wetland performance. The system worked without freezing even under $-10^{\circ}C$ of air temperature as long as watewater was flowing. BOD removal rates varied in similar pattern as the air temperature, and winter performance was relatively lower than that in the growing season. However, removing performance during winter was still significant, and BOD removal rates were almost the the same as in the growing season. SS removal rate was relativelyless affected by temmperature, but lower decay rate during the winter can result in accumulation of the SS in the system, which releases constituents in the next spring and can affect whole system performance. The winter removal rates of nutrients like T-N and T-P were decreased about half compared to the growing season and low temperature. To maintain stabilized wetland performanced including winter time, supplying minimum heating for plants could be an alternative in field application. Experimental data was compared with NADB(North Americal Wetlands for Water Quality treatment database), and general performance of the system was within the reasonable range. The pollutant loading and effluent concentration of the experimented system were in high margin. Base on the experiment and databases, the required effluent water quality could be achieved if loading rate adjusted as ilulstrated in the database.

  • PDF

A Study on Water Quality Modeling for Autochthonous BOD Effect in Namgang Dam Downstream (자생 BOD 영향에 따른 남강댐 하류부 수질모델링 연구)

  • Hwang, Soo Deok;Lee, Sung Jun;Kim, Young Do;Kwon, Jae Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.413-424
    • /
    • 2013
  • The TMDL, the watershed-oriented water quality management policy, was introduced to inhibit the total amount of pollutant loading generation, and to develop the region environmentally friendly. However, despite the implementation of TMDL, the water quality of Nam river downstream has worsened continuously since 2005. Diverse pollution sources such as cities and industrial zone are scattered around the Nam river. Eutrophication are caused due to deterioration of water quality by low velocity. BOD concentrations in the eutrophic waters affected by the incoming BOD and the autochthonous BOD by the production of phytoplankton. In this study, the quantitative relation of incoming BOD and autochthonous BOD was analyzed for water quality management. The influence of autochthonous BOD was analyzed using QUALKO2 and QUAL2E. Considering the effects of Chl.a, BOD concentration from QUALKO2 model simulations is higher than BOD concentration from QUAL2E model. The results of QUALKO2 showed higher correlation with the measured data. Autochthonous BOD needs to be managed to solve the water pollution problem of Nam river downstream, which is looking for ways to reduce Chl.a by using the increase of the dam outflow and the improvement of the water quality from WWTP.

Performance for a small on-site wastewater treatment system using the absorbent biofilter in rural areas (흡수성 Biofilter 를 이용한 농촌 소규모 오수처리 시설의 성능)

  • Kwun, Soon-Kuk;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.310-315
    • /
    • 1999
  • The feasibility of an absorbent biofilter system was examined for rural wastewater treatment. Hydraulic loading rates varied from 50 to 250 cm/day. Effluent of the septic tank was fed into the absorbent biofilter, and small ventilation fan was provided to supply air at the rate of 250 L/min to aerate the biofilter. The biofilter system demonstrated high removal rates for $BOD_5$ and TSS at the loading rate of 150 cm/day, generally meeting the Korean effluent water quality standard of 20 mg/L applicable to both. The nutrient removal was less satisfactory than the results of $BOD_5$ and TSS, but it was within the expected range of biological treatment processes. Considering the abnormally high influent concentration of nutrients during the experiment, better performance results could have been obtained if ordinary domestic wastewater was used. The system performance was not significantly affected by the hydraulic loading up to 150 cm/day, which is far more than the loading limit of the sand filter systems. Maintenance requirement was minimal, and no problems with noise, odor, flies or sludge arose. Since the biofilter system can be operated at a distance, operation in remote rural area and multi-system connected to one control office might be advantageous to the rural area. Overall, considering the cost-effectiveness, stable performance, and minimum maintenance, the biofilter system was thought to be a competitive alternative to treat wastewater in Korean rural communities.

  • PDF

The Management Planning of Pollutant Loading Allocation in the Kumho River Basin (금호강 유역의 오염총량 관리 대책 수립)

  • 황병기;정효준
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1125-1131
    • /
    • 2002
  • This study was performed to plan pollutant loading allocation by sub-watershed at Kumho river basin located in the north Kyeongsang province. HEC-geoHMS which is extension program of ArcView was used to extract sub-watershed. To simulate water quality, Qua12eu model was calibrated and validated. BOD was simulated under several scenarios to evaluate reduction effects of pollutant loading. Uniform treatment and transfer matrix method was considered. Effects of headwater flow rate and efficiency waste water treatment plant were also considered.

Water Quality Modeling and Environmantal Capacity in the Seom River Basin (섬강유역 환경용량 및 수질 Modeling)

  • 허인량;오근찬;최지용
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.80-86
    • /
    • 1998
  • Seom River was major branch of Namhan river, consist of primary basin that Wonjoo-city, Hoingsung-gun and primary contamination source was sewage from human lives. This study was evaluated production contamination loading of each branch basin and water quality grade and water quality simulation by QUAL2E to provide efficient contaminations source control. Rusult of survey, production loading of BOD, T-N, T-P were 26,591 kg/day, 4,560 kg/day, 731 kg/day resectively. Water quality analysis in 17 points of main stream were appeared that 1st grade(BOD 1 mg/l under) was 6 point, 2nd grade was 9 point and 3rd grade was 2 point. And result of water quality analysis for branch steram, first grade was evaluated 68.7%. Based of field data, calibration and verification result were in good agreement with mesured value within coefficient of variance were from 2.59% to 18.73%, from 6.39%, to 28.46%, respectively.

  • PDF

A Studies on Removal of Nutrient Material by Using Dropwort Field (미나리꽝을 이용한 영양물질제거에 관한 연구)

  • 이영신;김창회
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.16-20
    • /
    • 2003
  • Nitrogen(N) and phosphorus(P) in surface streams mainly lead to euthrophication. It aggravates water quality and consequently increases the purification costs. As a resolution of water contamination caused by household drainage through irrigation route by 70% of the 1,300 community residents in Eum-Am Myun, Seo-San city, was implemented biological self-purification method by growing Oenanthe Javanica along the polluted water tunnel. The contaminated water was efficiently purified after passing the dropwort field; DO conc. of effluent water was increased 8.3∼61.9% after through the drop wort field. HRT of experiment system was changed 0.05∼1.50/day. 50% of BOD was eliminated at the range above 12 mg/l of Influent BOD conc. Also, 50% of COD was eliminated at the range above 30 mg/l of Influent COD conc. Finnally, the influent T-N loading at range below 1.5 g/m$^3$/d reduced 50% of Influent T-N conc., and so did influent T-P loading at the range below 0.03 g/m$^3$/dwas reduced 50% of Influent T-P conc.

Water Quality Analysis in Nakdong River Tributaries for the Determination of Priority Management Areas (관리 우선순위 선정을 위한 낙동강 지류·지천 지점의 수질 오염 특성 분석)

  • Im, Tae Hyo;Na, Seungmin;Shin, Sangmin;Son, Younggyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.558-565
    • /
    • 2016
  • Water quality data including flow rates and BOD/COD/T-N/T-P/SS/TOC concentrations in Nakdong river tributaries were analyzed to determine priority management areas using 699 data sets from 195 locations in 2015. It was pointed out that the coefficients of variation, the ratio of the standard deviation to the mean, for the concentrations and loading rates of BOD, T-P, and TOC in each monitoring location were so large that average values of water quality monitoring data might be not appropriate to determine the priority management areas among all 195 monitoring stations in Nakdoing river. Therefore we suggested two evaluation methods using each water quality data independently. In the first method the excess numbers of the BOD, T-P, and TOC concentrations comparing to the water quality standards in the medium-sized management areas in Nakdong river was evaluated for each monitoring station. In the second method the percentile ranks of the loading rates of the BOD, T-P, and TOC were obtained for each monitoring data. The two groups of the priority management areas determined by each method were compared and the water quality characteristics in Nakdoing river were investigated.

Treatment of Synthetic Wastewater by Indirect Aerating Biofilter Submerged Gravel (잔자갈을 충전(充塡)한 간접폭기방식(間接曝氣方式) 침지여상(浸漬濾床)에 의한 합성하수처리(合成下水處理))

  • Yang, Sang Hyon;Won, Chan Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.129-138
    • /
    • 1988
  • In order to develop the design and operational criteria in sewage treatment by indirect aerating submerged biofilter, experimental investigations were performed for the reasonable oxygen supply and effecting factors of treatment efficiency. The experiments were executed for the up-flowing synthetic wastewater and aerated water in the submerged biofilter at $20^{\circ}C$. The obtained results are as follows: 1) Appropriate mean diameter of gravels was about 11mm. 2) $BOD_5$ loading rate based on biofilter volume was more reasonable than that on surface area of gravel for operational criteria. 3) To remove the influent $BOD_5$ more than 90%, $BOD_5$ loading rate must be less than $1.0kg-BOD_5/m^3{\cdot}d$ and circulating flowrate must be more than $189m^3/m^3{\cdot}d$. 4) Reaction rate coefficient $K_1$ is related to diameter of gravel and circulating flow rate based on biofilter volume.

  • PDF