• Title/Summary/Keyword: load-sensitive

Search Result 445, Processing Time 0.031 seconds

Calibration Kit for 4-Port Horizontal/Vertical Probing (4-포트 수평/수직 겸용 프로브용 교정키트)

  • Kim, Taeho;Kim, Jonghyeon;Kim, Sungjun;Kim, Kwangho;Pu, Bo;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.559-575
    • /
    • 2014
  • In this paper, we propose a horizontal/vertical calibration kit for calibrating a vector network analyzer(VNA) to measure the vertical connector pin. If the conventional calibration kit is used, we should change the arm for a probe or need an assistant device and it takes a long time. In addition there is a risk of precision degradation caused by the position change of the probe tip sensitive to the surroundings. We suggest a 4-port vertical calibration kit to make up for the aforementioned shortcomings. The calibration kit was manufactured for the SOLT calibration method. 'Short', 'Open', and 'Load' are available in the horizontal plane, 'Thru' is available not only in the horizontal plane on the two planes of a PCB, but in the vertical plane between the two planes according to the positions of the probes. We complemented the conventional calibration kit to make a vertical calibration kit to be used for the vertical measurement method. We compared and analysed their reflection/transfer characteristics of the SOLT calibration standards of the proposed calibration kit and conventional one, we get a ${\pm}0.1$ dB differences of transfer characteristics in the range from 300 kHz to 8.5 GHz. In order to demonstrate usefulness, and we performed a case study for horizontal and vertical cases, and compared the results of the proposed calibration kit and conventional one.

Comparison of Construction Cost and External Stability of Railway Abutment wall with Friction Angle of Backfill Materials (뒷채움재의 내부마찰각 변화에 따른 철도교대의 안정성 및 공사비 비교)

  • Yoo, Chunghyun;Choi, Chanyong;Yang, Sangbeom;Park, Yonggul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.67-76
    • /
    • 2016
  • The railway bridge abutment subjected to the lateral earth pressure is a sensitive structure that is affected by backfill materials, installation methods, compaction, and drainage system and so on. The several design loads for the bridge abutment design consist of traffic loading on bridges and vertical & lateral force due to surcharge load at backfill. Especially, the lateral earth pressure of design load components is important and considered in the design of geotechnical engineering structure such as bridge abutment wall. The determination of cross section for abutment is finally determined with calculating external stability and member force of abutment wall structures. In this study, the abutment wall height is 12m and the optimal cross section of abutment wall has been determined that satisfies an external stability for abutment structure through friction angles of 35, 40, and 45 degrees of backfill materials. The external stability and member force of abutment wall with friction angle of backfill materials and were calculated and construction cost of each abutment wall structures was compared. It found that the construction cost was reduced from 2.2 to 8.4% with friction angle of backfill materials.

The Behavior Characteristics of Segmental Crib Retaining Wall by Model Test (모형실험에 의한 조립식 격자 옹벽의 거동 특성)

  • 김상수;신방웅;김용언;이재영;변동건
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.449-456
    • /
    • 1999
  • The concrete wall is the most useful of retaining structure which can obtain the engineering stability, but has problems that is not friendly with nature environment in a fine view, such as poor rear drainage, and shrinkage crack by temperature difference, etc. Because of this problems, the research for a segmental crib retaining wall has been performed. A segmental crib retaining wall is quickly and easily erected because is possible to be erected as the individual members, and is not sensitive to differential settlement and earthquakes. Also, it shows effective drainage and has a friendly advantage with nature environment because of being able to be planted with vines and shrubs in retaining walls The design of crib retaining walls has traditionally been based on classical soil mechanics theories. These theories, originally derived by Rankine(1857) and Coulomb(1776), assume that the wall acts as a rigid body. This assumption results in failure being predicted by either monolithic overturning or base sliding mechanisms. However, the wall consists of individual members which have been created a three dimensional grid. This grid confines an fill mass which becomes part of the wall. The filled wall resists the earth pressure with the same mechanism of classical gravity walls. Because of the flexibility of the individual segment, it allows relative movement between the individual members within the wall. The three dimensional flexible grid leads to stress redistribution when the wall is subjected to external or fill loads. Due to the flexibility and the stress redistribution, the failure of segmental crib wall consists of not only overturing and base sliding but the local deformation and the failure between the segmental members. It has been researched in the field that due to this flexibility and load redistribution, serviceability failure of segmental crib walls is unlikely to be due to overturning or base sliding. Therefore, in this study, the relative displacement appearance of retaining wall due to variation of inclination is measured to examine this behavior characteristics. Also, the behavior characteristics of retaining walls by surcharge load, and location of acting point of retaining wall rear, and the displacement characteristics and deflections are estimated about the existence and nonexistence of Rear Stretcher performing an role in transmitting earth pressure of Header and Stretcher organizing retaining walls. This research focuses on the characteristics due to the behavior of retaining walls. This research focuses on the characteristics due to the behavior of retaining walls.

  • PDF

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

A Study on the Pile Material Suited for Pile Supported Embankment Reinforced by Geosynthetics (토목섬유로 보강된 성토지지말뚝 구조에 적합한 말뚝재료의 개발)

  • Choi, Choong-Lak;Lee, Kwang-Wu;Kim, Eun-Ho;Jung, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • It is a current trend that the concrete track is applied for high speed railway. In the case of the railway embankment constructed on soft ground, the damage to concrete track which is sensitive to settlement such as distortion and deflection could be caused by very small amount of long term settlement. Pile Supported Embankment method can be considered as the effective method to control the residual settlement of the railway embankment on soft ground. The Geosynthetics is used inside of the embankment to maximize the arching effect transmitting the load of the embankment to the top of the piles. But, PHC piles that are generally used for bridge structures are also applied as the pile supporting the load of embankment concentrated by the effect of the Geosynthetics. That is very low efficiency in respect of pile material. So, in this study, the cast in place concrete pile was selected as the most suitable pile type for supporting the embankment by a case study and the optimum mixing condition of concrete using a by-product of industry was induced by performing the mixing designs and the compressive strength designs. And it is shown that the cast in place pile with the optimum mixing condition using the by-product of industry is 2.8 times more efficient than the PHC pile for the purpose of Pile Supported Embankment by the finite element analysis method.

Optimal Design of Permanent Magnet Thrust Bearings (영구자석형 스러스트 베어링의 최적 설계)

  • Yoo, Seong-Yeol;Kim, Woo-Yeon;Kim, Seung-Jong;Lee, Wook-Ryun;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 2011
  • In this paper, we describe a process for optimally designing a ring-type permanent magnet thrust bearing. The bearing consists of two sets of permanent magnet rings. One set is located inside the other set. An axial offset between the two sets creates axial force, which results in a thrust bearing function. In order to realize an optimal design of the bearing where the required load capacity of the bearing is achieved with the least magnet volume, we derived analytical design equations by adopting the equivalent current sheet (ECS) method. We considered the following two types of magnet arrays: axial arrays and Halbach arrays. These two types of arrays are optimized using the analytical design equations. The results of the optimization are verified using three dimensional (3D) finite element analyses (FEA). The results show that the Halbach array can achieve the required load capacity with less amount of permanent magnet than the axial array does. The efficacy of the ECS method is also verified by using 3D FEA. It is found that the accuracy of ECS method is more sensitive to the underlying assumptions for the Halbach array than for the axial array.

Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I) (농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I))

  • 권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

Relationship of EMG and Subjective Discomfort Ratings for Repetitive Handling of Lightweight Loads

  • Lee, Inseok;Jo, Sungpill
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.565-575
    • /
    • 2014
  • Objective: The aim of this study is to evaluate the effect of weight of load and time on the physical workload of repetitive upper-limb tasks with handling light weight loads using EMG and perceived discomfort, and to investigate the relationship between EMG and perceived discomfort for those repetitive tasks of moving light weight loads. Background: Repetitive upper-limb motion is known as one of the main risk factors of musculoskeletal disorders, and a lot of repetitive tasks are carried out while handling light weight loads in the industry. In evaluating the workload of repetitive tasks handling light weight loads, EMG and perceived discomfort can be used, though their relationship in those work conditions are not much investigated. Method: A laboratory experiment with 18 healthy males were conducted to record EMG signals from 5 muscle sites of the right arm and shoulder and rate perceived discomforts for the body parts and the whole body while carrying out repetitive materials-handling tasks for 52min. The subjects were divided into 3 groups which handled the loads of 1kg, 2kg and 3kg, respectively. ANOVAs were conducted to analyze the effects of the weight and time on RMS of EMG amplitude (normalized RMS: NRMS), median frequency of power spectrum of EMG (normalized MDF: NMDF) and perceived discomfort. The correlations between NRMS and NMDF and perceived discomfort were also analyzed. Results: Statistically significant muscular fatigue effects were not found from NRMS and NMDF in most muscles, while there were significant increases of discomfort as the task time elapsed. It was shown that there were an increasing trend of the muscular activity as the weight of load increased and a decreasing trend of median frequency of EMG of upper and lower arms as time elapsed. It was found that there were significant negative correlations between NMDFs from the lower arm and discomfort ratings, though the relationships were weak. Conclusion: It can be concluded that the working conditions adopted in this study were not enough to induce muscular fatigue, while there was significant increase in perceived discomfort. A further study is necessary to integrate the objective and subjective measures for more reliable and sensitive evaluation of workload of repetitive tasks of handling light weight loads. Application: This study can be used as a basic study for the evaluation of workload of repetitive tasks handling light weight loads.

Effect of loading velocity on the seismic behavior of RC joints

  • Wang, Licheng;Fan, Guoxi;Song, Yupu
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.665-679
    • /
    • 2015
  • The strain rate of reinforced concrete (RC) structures stimulated by earthquake action has been generally recognized as in the range from $10^{-4}/s$ to $10^{-1}/s$. Because both concrete and steel reinforcement are rate-sensitive materials, the RC beam-column joints are bound to behave differently under different strain rates. This paper describes an investigation of seismic behavior of RC beam-column joints which are subjected to large cyclic displacements on the beam ends with three loading velocities, i.e., 0.4 mm/s, 4 mm/s and 40 mm/s respectively. The levels of strain rate on the joint core region are correspondingly estimated to be $10^{-5}/s$, $10^{-4}/s$, and $10^{-2}/s$. It is aimed to better understand the effect of strain rates on seismic behavior of beam-column joints, such as the carrying capacity and failure modes as well as the energy dissipation. From the experiments, it is observed that with the increase of loading velocity or strain rate, damage in the joint core region decreases but damage in the plastic hinge regions of adjacent beams increases. The energy absorbed in the hysteresis loops under higher loading velocity is larger than that under quasi-static loading. It is also found that the yielding load of the joint is almost independent of the loading velocity, and there is a marginal increase of the ultimate carrying capacity when the loading velocity is increased for the ranges studied in this work. However, under higher loading velocity the residual carrying capacity after peak load drops more rapidly. Additionally, the axial compression ratio has little effect on the shear carrying capacity of the beam-column joints, but with the increase of loading velocity, the crack width of concrete in the joint zone becomes narrower. The shear carrying capacity of the joint at higher loading velocity is higher than that calculated with the quasi-static method proposed by the design code. When the dynamic strengths of materials, i.e., concrete and reinforcement, are directly substituted into the design model of current code, it tends to be insufficiently safe.

Analysis of Life Cycle Costs of Railway Track : A Case Study for Ballasted and Concrete Track for High-Speed Railway (철도 궤도의 수명주기비용 분석 : 고속철도 자갈궤도와 콘크리트궤도 사례 연구)

  • Jang, Seung Yup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.110-121
    • /
    • 2016
  • In the decision-making, such as selection of structure, construction method, or time and scheme of maintenance, the evaluation of life-cycle cost(LCC) is of great importance. The maintenance cost occupy a large portion of the LCC of the railway track as well as the initial construction cost. Futhermore, the proportion of the maintenance cost is much higher in the ballasted track. Thus, the importance of the LCC evaluation is higher than in any other engineering structures. In this study, a LCC model that can consider various design parameters such as the type of track structure, annual traffic volume, axle load, train speed, and proportion of curve sections and engineering structures has been developed. Fundamental data for calculating costs also have been presented. Based on the model and data proposed, the trends in the variation of LCC according to the design parameters were examined and the most important design parameters in the LCC analysis of railway track were investigated. The results show that the proportion of renewal and operational costs is much higher in the ballasted track than in the concrete track, and the annual traffic volume and ballast taming period are most significant factors on the LCC of the ballasted track. On the contrary, it is revealed that the proportion of the initial construction costs in the concrete track is much higher, and the LCC of the concrete track is less sensitive to the traffic volume, train speed, and axle load.