• Title/Summary/Keyword: load-displacement hysteresis

Search Result 53, Processing Time 0.023 seconds

An applied model for steel reinforced concrete columns

  • Lu, Xilin;Zhou, Ying
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.697-711
    • /
    • 2007
  • Though extensive research has been carried out for the ultimate strength of steel reinforced concrete (SRC) members under static and cyclic load, there was only limited information on the applied analysis models. Modeling of the inelastic response of SRC members can be accomplished by using a microcosmic model. However, generally used microcosmic model, which usually contains a group of parameters, is too complicated to apply in the nonlinear structural computation for large whole buildings. The intent of this paper is to develop an effective modeling approach for the reliable prediction of the inelastic response of SRC columns. Firstly, five SRC columns were tested under cyclic static load and constant axial force. Based on the experimental results, normalized trilinear skeleton curves were then put forward. Theoretical equation of normalizing point (ultimate strength point) was built up according to the load-bearing mechanism of RC columns and verified by the 5 specimens in this test and 14 SRC columns from parallel tests. Since no obvious strength deterioration and pinch effect were observed from the load-displacement curve, hysteresis rule considering only stiffness degradation was proposed through regression analysis. Compared with the experimental results, the applied analysis model is so reasonable to capture the overall cyclic response of SRC columns that it can be easily used in both static and dynamic analysis of the whole SRC structural systems.

A Study on Characteristics of Hybrid Damping Device Combining Rubber Core Pad and Hysteretic Steel Slit (고무코어패드와 강재이력감쇠장치를 결합한 복합감쇠장치의 이력특성에 관한 연구)

  • Park, Byung-Tae;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2023
  • This study proposes an RCS composite damping device that can achieve seismic reinforcement of existing buildings by dissipating energy by inelastic deformation. A series of experiments assessing the performances of the rubber core pad, hysteretic steel slit damping device, and hybrid RCS damping device were conducted. The results showed that the ratios of the deviations to the mean values satisfied the domestic damping-device conformity condition for the load at maximum device displacement in each direction, at the maximum force and minimum force at zero displacement, as well as the hysteresis curve area. In addition, three analysis models based on load-displacement characteristics were proposed for application to seismic reinforcement design. In addition, the validity of the three proposed models was confirmed, as they simulated the experimental results well. Meanwhile, as the shear deformation of the rubber-core pad increased, the hysteretic behavior of super-elasticity greatly increased the horizontal force of the damping device. Therefore, limiting the allowable displacement during design is deemed to be necessary.

Hysteresis Model for the Cyclic Response of Existing Reinforced Concrete Frames (기존 철근콘크리트 골조의 반복거동 예측을 위한 이력모델)

  • Son, Joo-Ki;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.81-89
    • /
    • 2020
  • As the damage caused by earthquakes gradually increases, seismic retrofitting for existing public facilities has been implemented in Korea. Several types of structural analysis methods can be used to evaluate the seismic performance of structures. Among them, for nonlinear dynamic analysis, the hysteresis model must be carefully applied because it can significantly affect the behavior. In order to find a hysteresis model that predicts rational behavior, this study compared the experimental results and analysis results of the existing non-seismic reinforced concrete frames. For energy dissipation, the results were close to the experimental values in the order of Pivot, Concrete, Degrading, and Takeda models. The Concrete model underestimated the energy dissipation due to excessive pinching. In contrast, the other ones except the Pivot model showed the opposite results with relatively little pinching. In the load-displacement curves, the experimental and analysis results tended to be more similar when the column axial force was applied to columns.

Effect of loading rate on mechanical behavior of SRC shearwalls

  • Esaki, Fumiya;Ono, Masayuki
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.201-212
    • /
    • 2001
  • In order to investigate the effect of the loading rate on the mechanical behavior of SRC shearwalls, we conducted the lateral loading tests on the 1/3 scale model shearwalls whose edge columns were reinforced by H-shaped steel. The specimens were subjected to the reversed cyclic lateral load under a variable axial load. The two types of loading rate, 0.01 cm/sec for the static loading and 1 cm/sec for the dynamic loading were adopted. The failure mode in all specimens was the sliding shear of the in-filled wall panel. The edge columns did not fail in shear. The initial lateral stiffness and lateral load carrying capacity of the shearwalls subjected to the dynamic loading were about 10% larger than those subjected to the static loading. The effects of the arrangement of the H-shaped steel on the lateral load carrying capacity and the lateral load-displacement hysteresis response were not significant.

Static Performance Diagnosis Based on Pressure Signal for a Flow Control Servovalve or Proportional Direction Valve (유량제어용 서보밸브와 비례방향밸브의 압력신호를 이용한 정적 성능 진단에 관한 연구)

  • Kim, S.D.;Jeon, S.H.;Kim, I.D.;Ham, Y.B.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.32-41
    • /
    • 2012
  • Most diagnosis methods for servo valves requires installing spool displacement sensor or flow sensor as well as pressure sensor. The measurement of flow is hard to implement and many kinds of servovalves or proportional direction valves do not have a built-in spool displacement sensor. In this study, static performances of servovalve or proportional-direction-valve are studied theoretically and a diagnosis technique, which uses only load pressure and input current signal, is assessed. An experimental setup was made based upon a personal computer and the LabVIEW graphical language. A series of diagnosis tests were performed and the analysis results showed it possible to measure the pressure gain, hysteresis and null bias in a relatively simple methodology.

Finite Element Modeling and Analysis of Nonlinear Dynamic characterisics of Leaf spring (판 스프링의 비선형 동특성 해석)

  • 임홍재;권영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.842-846
    • /
    • 1996
  • Leaf springs are widely used as a major suspension component in many commercial vehicles, such as buses, trucks, etc. They have a complex dynamic behavior due to the geometric nonlinear and the contact mechanism between the leaves. The interface conditions between the leaves play a significant role in the global behavior of the comfort and ride of the vehicle system. The paper concentrates on modeling leaf springs and contact frictions between the leaves using a nonlinear finite element approach. A nonlinear load-displacement hysteresis curve for the leaf spring is simulated and its results are compared with test results.

  • PDF

Software for biaxial cyclic analysis of reinforced concrete columns

  • Shirmohammadi, Fatemeh;Esmaeily, Asad
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.353-386
    • /
    • 2016
  • Realistic assessment of the performance of reinforced concrete structural members like columns is needed for designing new structures or maintenance of the existing structural members. This assessment requires analytical capability of employing proper material models and cyclic rules and considering various load and displacement patterns. A computer application was developed to analyze the non-linear, cyclic flexural performance of reinforced concrete structural members under various types of loading paths including non-sequential variations in axial load and bi-axial cyclic load or displacement. Different monotonic material models as well as hysteresis rules, were implemented in a fiber-based moment-curvature and in turn force-deflection analysis, using proper assumptions on curvature distribution along the member, as in plastic-hinge models. Performance of the program was verified against analytical results by others, and accuracy of the analytical process and the implemented models were evaluated in comparison to the experimental results. The computer application can be used to predict the response of a member with an arbitrary cross section and various type of lateral and longitudinal reinforcement under different combinations of loading patterns in axial and bi-axial directions. On the other hand, the application can be used to examine analytical models and methods using proper experimental data.

Experimental study on mechanical performances of lattice steel reinforced concrete inner frame with irregular section columns

  • Xue, Jianyang;Gao, Liang;Liu, Zuqiang;Zhao, Hongtie;Chen, Zongping
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.253-267
    • /
    • 2014
  • Based on the test on a 1/2.5-scaled model of a two-bay and three-story inner frame composed of reinforced concrete beams and lattice steel reinforced concrete (SRC) irregular section columns under low cyclic reversed loading, the failure process and the features of the frame were observed. The subsequence of plastic hinges of the structure, the load-displacement hysteresis loops and the skeleton curve, load bearing capacity, inter-story drift ratio, ductility, energy dissipation and stiffness degradation were analyzed. The results show that the lattice SRC inner frame is a typical strong column-weak beam structure. The hysteresis loops are spindle-shaped, and the stiffness degradation is insignificant. The elastic-plastic inter-story deformation capacity is high. Compared with the reinforced concrete frame with irregular section columns, the ductility and energy dissipation of the structure are better. The conclusions can be referred to for seismic design of this new kind of structure.

Nonlinear Analysis Models to Predict the Hysteretic Behavior of Existing RC Column Members (기존 RC 기둥 부재의 이력거동 예측을 위한 비선형 해석모델)

  • Choi, Myeong-Ho;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.89-98
    • /
    • 2022
  • The recent earthquake in Korea caused a lot of damage to reinforced concrete (RC) columns with non-seismic details. The nonlinear analysis enables predicting the hysteresis behavior of RC columns under earthquakes, but the analytical model used for the columns must be accurate and practical. This paper studied the nonlinear analysis models built into a commercial structural analysis program for the existing RC columns. The load-displacement relationships, maximum strength, initial stiffness, and energy dissipation predicted by the three analysis models were compared and analyzed. The results were similar to those tested in the order of the fiber, Pivot, and Takeda models, whereas the fiber model took the most time to build. For columns subjected to axial load, the Pivot model could predict the behavior at a similar level to that of the fiber model. Based on the above, it is expected that the Pivot model can be applied most practically for existing RC columns.

A Study on the Rolling Friction Characteristics of Large Scale Roller Shoe for Bridge Supporter (교량받침용 대형 Roller Shoe의 구름마찰특성에 관한 연구)

  • 김영득;김재철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.660-663
    • /
    • 2001
  • There is a mechanical device between the superstructure and substructure of a bridge, which transmit vertical load of superstructure to the substructure and absorb horizontal displacement of super structure due to thermal, dynamic, load, etc. In order to meet two requirements at once, the structure of roller between plates is widely used, and this roller between plates is widely used, and this roller shoe system is known to have smaller horizontal movement resistance than any other type of bridge shoe. In this study, rolling friction resistance characteristics of roller-plate friction system is investigated according to roller dimension, vertical load, hardness and roughness of roller and plate. On the base of the results, the rolling friction resistance of large scale roller shoe is evaluated using model experiment.

  • PDF