• Title/Summary/Keyword: load paths

Search Result 171, Processing Time 0.024 seconds

Enhancement of mechanical and durability properties of preplaced lightweight aggregate concrete

  • Bo Peng;Jiantao Wang;Xianzheng Dong;Feihua Yang;Chuming Sheng;Yunpeng Liu
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.419-430
    • /
    • 2023
  • In this study, the effect of two types of aggregates (fly ash aggregate and shale aggregate) on the density, strength, and durability of preplaced lightweight aggregate concrete (PLWAC) was studied. The results showed that the 7 - 28 days strength of concrete prepared with fly ash aggregates (high water absorption rate) significantly increased, which could attribute to the long-term water release of fly ash aggregates by the refined pore structure. In contrast, the strength increase of concrete prepared with shale aggregates (low water absorption rate) is not apparent. Although PLWAC prepared with fly ash aggregates has a lower density and higher strength (56.8 MPa @ 1600 kg/m3), the chloride diffusion coefficient is relatively high, which could attribute to the diffusion paths established by connected porous aggregates and the negative over-curing effect. Compared to the control group, the partial replacement of fly ash aggregates (30%) with asphalt emulsion (20% solid content) coated aggregates can reduce the chloride diffusion coefficient of concrete by 53.6% while increasing the peak load obtained in a three-point bending test by 107.3%, fracture energy by 30.3% and characteristic length by 103.5%. The improvement in concrete performance could be attributed to the reduction in the water absorption rate of aggregates and increased energy absorption by polymer during crack propagation.

Behaviour insights on damage-control composite beam-to-beam connections with replaceable elements

  • Xiuzhang He;Michael C.H. Yam;Ke Ke;Xuhong Zhou;Huanyang Zhang;Zi Gu
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.773-791
    • /
    • 2023
  • Connections with damage concentrated to pre-selected components can enhance seismic resilience for moment resisting frames. These pre-selected components always yield early to dissipate energy, and their energy dissipation mechanisms vary from one to another, depending on their position in the connection, geometry configuration details, and mechanical characteristics. This paper presents behaviour insights on two types of beam-to-beam connections that the angles were designed as energy dissipation components, through the results of experimental study and finite element analysis. Firstly, an experimental programme was reviewed, and key responses concerning the working mechanism of the connections were presented, including strain distribution at the critical section, section force responses of essential components, and initial stiffness of test specimens. Subsequently, finite element models of three specimens were established to further interpret their behaviour and response that were not observable in the tests. The moment and shear force transfer paths of the composite connections were clarified through the test results and finite element analysis. It was observed that the bending moment is mainly resisted by axial forces from the components, and the dominant axial force is from the bottom angles; the shear force at the critical section is primarily taken by the slab and the components near the top flange. Lastly, based on the insights on the load transfer path of the composite connections, preliminary design recommendations are proposed. In particular, a resistance requirement, quantified by a moment capacity ratio, was placed on the connections. Design models and equations were also developed for predicting the yield moment resistance and the shear resistance of the connections. A flexible beam model was proposed to quantify the shear resistance of essential components.

A Study for Improving Performance of ATM Multicast Switch (ATM 멀티캐스트 스위치의 성능 향상을 위한 연구)

  • 이일영;조양현;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1922-1931
    • /
    • 1999
  • A multicast traffic’s feature is the function of providing a point to multipoints cell transmission, which is emerging from the main function of ATM switch. However, when a conventional point-to-point switch executes a multicast function, the excess load is occurred because unicast cell as well as multicast cell passed the copy network. Additionally, due to the excess load, multicast cells collide with other cells in a switch. Thus a deadlock that losses cells raises, extremely diminishes the performance of switch. An input queued switch also has a defect of the HOL (Head of Line) blocking that less lessens the performance of the switch. In the proposed multicast switch, we use shared memory switch to reduce HOL blocking and deadlock. In order to decrease switch’s complexity and cell's processing time, to improve a throughput, we utilize the method that routes a cell on a separated paths by traffic pattern and the scheduling algorithm that processes a maximum 2N cell at once in the control part. Besides, when cells is congested at an output port, a cell loss probability increases. Thus we use the Output Memory (OM) to reduce the cell loss probability. And we make use of the method that stores the assigned memory (UM, MM) with a cell by a traffic pattern and clears the cell of the Output memory after a fixed saving time to improve the memory utilization rate. The performance of the proposed switch is executed and compared with the conventional policy under the burst traffic condition through both the analysis based on Markov chain and simulation.

  • PDF

Load Balancing of Unidirectional Dual-link CC-NUMA System Using Dynamic Routing Method (단방향 이중연결 CC-NUMA 시스템의 동적 부하 대응 경로 설정 기법)

  • Suh Hyo-Joon
    • The KIPS Transactions:PartA
    • /
    • v.12A no.6 s.96
    • /
    • pp.557-562
    • /
    • 2005
  • Throughput and latency of interconnection network are important factors of the performance of multiprocessor systems. The dual-link CC-NUMA architecture using point-to-point unidirectional link is one of the popular structures in high-end commercial systems. In terms of optimal path between nodes, several paths exist with the optimal hop count by its native multi-path structure. Furthermore, transaction latency between nodes is affected by congestion of links on the transaction path. Hence the transaction latency may get worse if the transactions make a hot spot on some links. In this paper, I propose a dynamic transaction routing algorithm that maintains the balanced link utilization with the optimal path length, and I compare the performance with the fixed path method on the dual-link CC-NUMA systems. By the proposed method, the link competition is alleviated by the real-time path selection, and consequently, dynamic transaction algorithm shows a better performance. The program-driven simulation results show $1{\~}10\%$ improved fluctuation of link utilization, $1{\~}3\%$ enhanced acquirement of link, and $1{\~}6\%$ improved system performance.

Design and Performance Evaluation of a 3-Dimensional Nonblocking Copy Network for Multicast ATM Switches (ATM 멀티캐스트 스위치를 위한 3차원 논블럭킹 복사망의 설계 및 성능평가)

  • 신재구;손유익
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.6
    • /
    • pp.696-705
    • /
    • 2002
  • This paper presents a new copy network for multicast ATM switches. Many studies have been carried out up to date since the proposition of Lee's copy network. However, the overflows and cell conflicts within the switch have still been raised a problem in argument. In order to reduce those problems, we proposed a 3-dimensional multicast switching architecture which has shared buffers in this paper. The proposed architecture can reduce the overflows and cell conflicts through multiple paths and output ports even in the high load environments. Also, we proposed a cell splitting algorithm which handles the cell in the case of large fan-out, and a copy network to increase throughput by expanding the Lee's Broadcast Banyan Network(BBN). Cell copy uses the Boolean interval splitting algorithm and the multicast pattern of the cells according to the self-routing characteristics of the network. In the proposed copy network, we improve the problems such as overflow, cell splitting of large fanout, cell conflicts, etc., which were still existed in the Lee's network. The results of performance evaluation by computer simulation show that the proposed scheme has better throughput, cell loss rate and cell delay than the conventional method.

An Evaluation of Progressive Collapse Resisting Capacity of RC Structure Using Static and Dynamic Analysis (정적 및 동적 해석을 이용한 철근콘크리트 건물의 연쇄붕괴 저항성능 평가)

  • Seo, Dae-Won;Kim, Hae-Jin;Shin, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.238-245
    • /
    • 2010
  • Progressive collapse is defined as a collapse caused by sectional destruction of a structural member which links to other surrounding structures. Currently the design guidelines for the prevention of progressive collapse is not available in Korea. So, structural engineers have a difficulty in evaluating progressive collapse. In this study, the static and dynamic analysis to evaluate the methods and procedures are conducted using commercial analysis program for RC moment resisting frames. According to the study, DCR value of RC moment resisting frame system based on code in Korea is over 2 and it shows that it can't provide alternate load paths due to the progressive collapse. And additional reinforcement should be considered for the progressive collapse resistance. As a result of vertical deflection and DCR value of linear static analysis and linear dynamic analysis, the results of dynamic analysis were underestimated more than the result of static analysis. Thus, the dynamic coefficient value of 2 provides conservative estimation.

Energy Saving Characteristics of OSPF Routing Based on Energy Profiles (Energy Profile에 기반한 OSPF 라우팅 방식의 에너지 절약 특성)

  • Seo, Yusik;Han, Chimoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1296-1306
    • /
    • 2015
  • Nowadays the research of energy saving on the IP networks have been studied the various methods in many research institutes. This paper suggests the energy saving method in IP networks which have the various energy profiles, and analyzes its energy saving characteristics in detail. Especially this paper proposes the energy profile based OSPF routing method which have the selectable weighted value in OSPF metric and energy consumption in IP network. This paper analyzes the energy saving effects of the various situations to minimize the energy consumption using the various weighted value on the proposed scheme. The results show that the energy saving efficiency can get about 67% at in ingress input load ${\rho}=0.5$ by using random energy profiles in IP networks. Although the number of hops is a slight increased due to routing the paths for the minimum energy consumption in the algorithm of this method, the increment hop number is limited the mean 1.4 hops. This paper confirms that the energy profile of core router has the large effects of energy saving than the energy profile of edge router, and the proposed method has the excellent energy saving characteristics in IP networks.

Numerical Studies on Combined VH Loading and Inclination Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-수평 조합하중 지지력과 경사계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.29-46
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - horizontal loading capacity was studied by three-dimensional numerical modelling. A numerical model was implemented to simulate the swipe loading and the probe loading methods and an interpretation procedure was devised in order to eliminate the numerical error from the restricted mesh density. Using the Mohr-Coulomb plasticity model, the effect of friction angle was studied under the associated flow-rule condition. The swipe loading method, which is efficient in that the interaction diagram can be drawn with smaller number of analyses, was confirmed to give similar results with the probe loading method, which follows closely the load-paths applied to real structures. For circular footings with a rough base, the interaction diagram for combined vertical (V) - horizontal (H) loading and the inclination factor were barely affected by the friction angle. It was found that the inclination factors for strip and rectangular footings are applicable to circular footings. For high H/V ratios, the results by numerical modelling of this study were smaller than the results of previous studies. Discussions are made on the factors affecting the numerical results and the areas for further researches.

Path-Planning for Group Movement in Dynamic Environments (동적 환경에서 그룹 이동을 위한 경로 계획)

  • Yu, Kyeonah;Cho, Su-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.117-126
    • /
    • 2013
  • Path planning is an essential problem to make virtual characters navigate in many applications including computer games. In many cases, multiple characters move in a group and qualitative aspects of planned paths are emphasized rather than optimality unlike Robotics. In this paper, we propose a two-level path planning algorithm in which the global path is planned for a single character specified as a leader and then the local path is planned to avoid dynamic obstacles while the group following this path. The space for group movement is achieved in the form of square grid array called a grid window. Member characters are located relatively to the leader within a space and moved. The static environment is reduced to the configuration space of this grid window to generate a roadmap on which a grid window can move. In local path planning, only the leader avoids dynamic obstacles by using an artificial potential field and the rest of members are located relatively to the leader in the grid window, which reduces computational load. Efficient algorithms to implement the proposed planning methods are introduced. The simulation results show that a group can handle with dynamic obstacles effectively while moving along the planned path for a static environment.

A Priority Based Multipath Routing Mechanism in the Tactical Backbone Network (전술 백본망에서 우선순위를 고려한 다중 경로 라우팅 방안)

  • Kim, Yongsin;Shin, Sang-heon;Kim, Younghan
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.1057-1064
    • /
    • 2015
  • The tactical network is system based on wireless networking technologies that ties together surveillance reconnaissance systems, precision strike systems and command and control systems. Several alternative paths exist in the network because it is connected as a grid to improve its survivability. In addition, the network topology changes frequently as forces and combatants change their network access points while conducting operations. However, most Internet routing standards have been designed for use in stable backbone networks. Therefore, tactical networks may exhibit a deterioration in performance when these standards are implemented. In this paper, we propose Priority based Multi-Path routing with Local Optimization(PMPLO) for a tactical backbone network. The PMPLO separately manages the global and local metrics. The global metric propagates to other routers through the use of a routing protocol, and it is used for a multi-path configuration that is guaranteed to be loop free. The local metric reflects the link utilization that is used to find an alternate path when congestion occurs, and it is managed internally only within each router. It also produces traffic that has a high priority privilege when choosing the optimal path. Finally, we conducted a simulation to verify that the PMPLO can effectively distribute the user traffic among available routers.