• Title/Summary/Keyword: load observer

Search Result 269, Processing Time 0.021 seconds

Precision Speed Control of PMSM Using Neural Observer (Neural Observer를 이용한 PMSM의 정밀 속도 제어)

  • Ko Jong-Sun;Lee Yong-Jae;Lee Tae-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.53-56
    • /
    • 2002
  • This paper presents neural observer that used to deadbeat load torque observer. Most practical systems are nonlinear, and it is general practice to use linear models to simplify their analysis and design. However, the locally linearized model is invalid for a large signal change. The neural observer is suggested to increase the performance of the load torque observer and main controller The output error and estimeted state is trianed by neural network of neural observer. As a result, the state estimation error is minimised and deadbeat load torque observer make use of corrected esimation state. To reduce of the noise effect of deadbeat load torque observer, the post-filter which is implemented by MA process, is adopted. As a result, the proposed control system becomes a robust and precise system against the load torque. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM (PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구)

  • Go, Jong-Seon;Yun, Seong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

A Study on the Robust Speed Control Characteristics of Induction Motor Using State Observer (상태 관측기를 이용한 유도전동기의 강인한 속도 제어특성에 관한 연구)

  • 이성근;노창주;김윤식;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.503-511
    • /
    • 1997
  • In 3 phase induction motor control system, the speed control using the load torque observer becomes robust against disturbances by means of a feed-forward control of the estimated load torque component. In case of variation of inertia moment, the estimated load torque has error because the observer uses the nominal inertia to estimate the load torque. And so, it is difficult to obtain good speed control characteristics. This paper has two study target strategy. First, we executes feed-forward control with the load torque observer when motor inertia has nominal value and compare it with conventional PI con¬trol. The second strategy estimates inertia moment error using the load torque observer when inertia moment change. The proposed two strategy is confirmed through the computer simulations and the experimental implementations by TMS320C31 microprocessor.

  • PDF

Asymptotically Stable Adaptive Load Torque Observer for Precision Position Control of BLDC Motor

  • 고종선
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.97-100
    • /
    • 1997
  • A new control method for the robust position control of a brushless DC(BLDC) motor using the asymptotically stable adaptive load torque observer is presented. A precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method. And the application of the load torque observer is published in [1] using fixed gain. However, the flux linkage is not exactly known for a load torque observer. Therefore, a model reference adaptive observer is considered to overcome the problem of the unknown parameter in this paper. And stability analysis is carried out using Liapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current having the fast response.

  • PDF

A Study on the Load Torque Observer based on Fuzzy Logic Control for a PM Synchronous Motor (영구자석 동기전동기를 위한 퍼지 제어기법 기반의 부하 토크관측기에 관한 연구)

  • Jung, Jin-Woo;Lee, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.26-32
    • /
    • 2010
  • This paper proposes a new load torque observer based on the Takagi-Sugeno fuzzy method for a permanent magnet synchronous motor(PMSM). A Linear Matrix Inequality(LMI) parameterization of the fuzzy observer gain is given, and the LMI conditions are derived for the existence of the fuzzy load torque observer guaranteeing $\alpha$-stability and linear quadratic performance. In this paper, a nonlinear speed controller is employed to validate the performance of the proposed fuzzy load torque observer, and various simulation results are presented under motor parameter and load torque variations.

Precision Position Control of PMSM Using Neural Network Disturbance observer and Parameter compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • 고종선;진달복;이태훈
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.188-195
    • /
    • 2004
  • This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.

Precision Position Control of PMSM using Load Torque Observer and Parameter Compensator (외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀위치제어)

  • Ko Jong-Sun;Lee Yong-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.285-288
    • /
    • 2002
  • This paper presents external load disturbance compensation that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a deadbeat observer To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller The proposed estimator is combined with a high performance load torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Precision Position Control of PMSM using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • Ko J.S.;Lee T.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.393-397
    • /
    • 2003
  • This paper presents neural load torque observer tha used to deadbeat load torque observer and regulation of the compensation gun by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator li combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper

  • PDF

Precision Speed Control of PMSM Using Neural Network Disturbance observer and Parameter compensation (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 속도제어)

  • Ko Jong-Sun;Lee Yong-Jae;Kim Kyu-Gyeom
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.389-392
    • /
    • 2001
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM (recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Precision Position Control of PMSM using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • Ko Jong-Sun;Kang Young-Jin;Lee Yong-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.49-52
    • /
    • 2002
  • This paper presents neural load torque observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF