• Title/Summary/Keyword: load modelling

Search Result 393, Processing Time 0.024 seconds

Verification Experiment and Analysis for 6 kW Solar Water Heating System(Part 2 : Modelling and Simulation) (6 kW급 태양열 온수급탕 시스템의 실증실험 및 분석(제2보 모델링 및 시뮬레이션))

  • 최봉수;김진홍;강용태;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.556-565
    • /
    • 2004
  • We have experimented an actual solar water heating system acquiring real data for one year period. On the basis of the operation data, it is necessary to predict the system performance such as collector efficiency and solar fraction, and to analyze the economical efficiency for system optimal design. To estimate the performance of actual systems through simulation, valid modelling for components consisting of the system should be accompanied. The present study is focused on the modelling for load patterns and operating control conditions. We proposed two load models: concentration model which gathers real loads as a meaningful group and distribution model which disperses real loads with time. If grouping of the load distribution is suitable, the predicted values by the concentration model approaches to those by the distribution model close to actual load pattern apparently. As a result, both of them are in good agreement with those by experiment.

Micro modelling of masonry walls by plane bar elements for detecting elastic behavior

  • Doven, Mahmud Sami;Kafkas, Ugur
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.643-649
    • /
    • 2017
  • Masonry walls are amongst the oldest building systems. A large portion of the research on these structures focuses on the load-bearing walls. Numerical methods have been generally used in modelling load-bearing walls during recent years. In this context, macro and micro modelling techniques emerge as widely accepted techniques. Micro modelling is used to investigate the local behaviour of load-bearing walls in detail whereas macro modelling is used to investigate the general behaviour of masonry buildings. The main objective of this study is to investigate the elastic behaviour of the load- bearing walls in masonry buildings by using micro modelling technique. In order to do this the brick and mortar units of the masonry walls are modelled by the combination of plane truss elements and plane frame elements with no shear deformations. The model used in this study has fewer unknowns then the models encountered in the references. In this study the vertical frame elements have equivalent elasticity modulus and moment of inertia which are calculated by the developed software. Under in-plane static loads the elastic displacements of the masonry walls, which are encountered in literature, are calculated by the developed software, where brick units are modelled by plane frame elements, horizontal joints are modelled by vertical frame elements and vertical joints are modelled by horizontal plane truss elements. The calculated results are compatible with those given in the references.

Load spectra growth modelling and extrapolation with REBMIX

  • Volk, Matej;Fajdiga, Matija;Nagode, Marko
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.589-604
    • /
    • 2009
  • In the field of predicting structural safety and reliability the operating conditions play an essential role. Since the time and cost limitations are a significant factors in engineering it is important to predict the future operating conditions as close to the actual state as possible from small amount of available data. Because of the randomness of the environment the shape of measured load spectra can vary considerably and therefore simple distribution functions are frequently not sufficient for their modelling. Thus mixed distribution functions have to be used. In general their major weakness is the complicated calculation of unknown parameters. The scope of the paper is to investigate the load spectra growth for actual operating conditions and to investigate the modelling and extrapolation of load spectra with algorithm for mixed distribution estimation, REBMIX. The data obtained from the measurements of wheel forces and the braking moment on proving ground is used to generate load spectra.

A Study on the Bending Performance of Structural Size Lumbers Using the ANSYS (ANSYS를 이용한 실대재의 휨특성에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • In our country, domestic species can not be used as a structural member because we have not yet grading system. So, to utilize as a basic data of grading system, bending test and numerical modelling on structural member were conducted in this study. 35 of Douglas-fir, 2" ${\times}$ 6", span 2.4 m were tested for the bending properties, and Ansys software was used to analyze the numerical modelling on the structural members. The data of knots were inspected and applied in numerical modelling. To obtain the accuracy of analysis, nonlinear numerical analysis was carried out instead of linear numerical analysis. Ultimate load had a wide range from 4883N to 11,738 N, and maximum deformation also had a range from 26 mm to 68 mm. Average of ultimate load was 8,616 N, and that of maximum deformation was 48 mm. The distinctive features of failure types were simple tension type and cross-grain tension type. Ulitmate load and maximum deformation from numerical modelling were 7,504 N and 37 mm. The numerical modelling drawn by this study is available to all species, and reasonable prediction on the bending performance is possible with only some material properties.

  • PDF

STRESS ANALYSIS WITH NONLINEAR MODELLING OF THE LOAD TRANSFER CHARACTERISTICS ACROSS THE OSSEOINTEGRATED INTERFACES OF DENTAL IMPLANT

  • Lee Seung-Hwan;Jo Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.267-279
    • /
    • 2004
  • A modelling scheme for the stress analysis taking into account load transfer characteristics of the osseointegrated interfaces between dental implant and surrounding alveolar bone was investigated. Main aim was to develop a more realistic simulation methodology for the load transfer at the interfaces than the prefect bonding assumption at the interfaces which might end up the reduced level in the stress result. In the present study, characteristics of osseointegrated bone/implant interfaces was modelled with material nonlinearity assumption. Bones at the interface were given different stiffness properties as functions of stresses. Six different models, i.e. tens0, tens20, tens40, tens60, tens80, and tens100 of which the tensile moduli of the bones forming the bone/implant interfaces were specified from 0, 20, 40, 60, 80, and 100 percents, respectively, of the compressive modulus were analysed. Comparisons between each model were made to study the effect of the tensile load carrying abilities, i.e. the effectivity of load transfer, of interfacial bones on the stress distribution. Results of the present study showed significant differences in the bone stresses across the interfaces. The peak stresses, however, were virtually the same regardless of the difference in the effectivity of load transfer, indicating the conventional linear modelling scheme which assumes perfect bonding at the bone/implant interface can be used without causing significant errors in the stress levels.

Numerical Modelling of Reinforced Soil Slopes Under Railway Load (열차하중을 받는 토목섬유 보강사면의 수치해석)

  • Jung, Young-Hoon;Lee, Il-Wha;Jang, Ki-Soo;Yoo, Seung-Joon;Lee, Su-Hyung
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.753-760
    • /
    • 2006
  • This paper presents the procedure and results of the numerical modelling that was carried out to investigate the stability of reinforced soil slopes under dynamic railway load. The two-dimensional explicit dynamic finite element method (ABACUS) was used to carry out the numerical analyses. To simulate the railway load, the top surface of the embankment was excited by the uniform distributed load whose frequency and magnitude was estimated by the measured railway acceleration during train passing. The embankment displacements and geogrid axial forces were analyzed to evaluate the stability of reinforced soil slopes under the dynamic train load.

Conceptual Design and Wind Load Analysis of Tall Building

  • Lee, S.L.;Swaddiwudhipong, S.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • The paper describes the conceptual design, structural modelling and wind load analysis of tall buildings. The lateral stiffness of the building can be obtained economically through the interaction of core walls with peripheral frame tube and/or bundle of frame tubes and integrated design of the basement. The main structural components should be properly distributed such that the building will deflect mainly in the direction of the applied force without inducing significant response in other directions and twist. The cost effectiveness can be further enhanced through close consultation between architects and engineers at an early stage of conceptual design. Simplified structural modelling of the building and its response in three principal directions due to wind load are included. Effects of the two main structural components on the performances of a 70-story reinforced concrete building in terms of peak drift and maximum acceleration under wind load are discussed.

  • PDF

Multi-Beams modelling for high-rise buildings subjected to static horizontal loads

  • Sgambi, Luca
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.283-294
    • /
    • 2020
  • In general, the study of a high-rise building's behaviour when subjected to a horizontal load (wind or earthquake) is carried out through numerical modelling with finite elements method. This paper proposes a new, original approach based on the use of a multi-beams model. By redistributing bending and axial stiffness of horizontal elements (beams and slabs) along vertical elements, it becomes possible to produce a system of differential equations able to represent the structural behaviour of the whole building. In this paper this approach is applied to the study of bending behaviour in a 37-storey building (Torre Pontina, Latina, Italy) with a regular reinforced concrete structure. The load considered is the wind, estimated in accordance with Italian national technical rules and regulations. To simplify the explanation of the approach, the wind load was considered uniform on the height of building with a value equal to the average value of the wind load distribution. The system of differential equations' is assessed numerically, using Matlab, and compared with the obtainable solution from a finite elements model along with the obtainable solutions via classical Euler-Bernoulli beam theory. The comparison carried out demonstrates, in the case study examined, an excellent approximation of structural behaviour.

Load Modeling based on System Identification with Kalman Filtering of Electrical Energy Consumption of Residential Air-Conditioning

  • Patcharaprakiti, Nopporn;Tripak, Kasem;Saelao, Jeerawan
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • This paper is proposed mathematical load modelling based on system identification approach of energy consumption of residential air conditioning. Due to air conditioning is one of the significant equipment which consumes high energy and cause the peak load of power system especially in the summer time. The demand response is one of the solutions to decrease the load consumption and cutting peak load to avoid the reservation of power supply from power plant. In order to operate this solution, mathematical modelling of air conditioning which explains the behaviour is essential tool. The four type of linear model is selected for explanation the behaviour of this system. In order to obtain model, the experimental setup are performed by collecting input and output data every minute of 9,385 BTU/h air-conditioning split type with $25^{\circ}C$ thermostat setting of one sample house. The input data are composed of solar radiation ($W/m^2$) and ambient temperature ($^{\circ}C$). The output data are power and energy consumption of air conditioning. Both data are divided into two groups follow as training data and validation data for getting the exact model. The model is also verified with the other similar type of air condition by feed solar radiation and ambient temperature input data and compare the output energy consumption data. The best model in term of accuracy and model order is output error model with 70.78% accuracy and $17^{th}$ order. The model order reduction technique is used to reduce order of model to seven order for less complexity, then Kalman filtering technique is applied for remove white Gaussian noise for improve accuracy of model to be 72.66%. The obtained model can be also used for electrical load forecasting and designs the optimal size of renewable energy such photovoltaic system for supply the air conditioning.

Structural behaviour of tapered concrete-filled steel composite (TCFSC) columns subjected to eccentric loading

  • Bahrami, Alireza;Badaruzzaman, Wan Hamidon Wan;Osman, Siti Aminah
    • Computers and Concrete
    • /
    • v.9 no.6
    • /
    • pp.403-426
    • /
    • 2012
  • This paper deals with the structural behaviour of tapered concrete-filled steel composite (TCFSC) columns under eccentric loading. Finite element software LUSAS is used to perform the nonlinear analyses to predict the structural behaviour of the columns. Results from the finite element modelling and existing experimental test are compared to verify the accuracy of the modelling. It is demonstrated that they correlate reasonably well with each other; therefore, the proposed finite element modelling is absolutely accurate to predict the structural behaviour of the columns. Nonlinear analyses are carried out to investigate the behaviour of the columns where the main parameters are: (1) tapered angle (from $0^{\circ}$ to $2.75^{\circ}$); (2) steel wall thickness (from 3 mm to 4 mm); (3) load eccentricity (15 mm and 30 mm); (4) L/H ratio (from 10.67 to 17.33); (5) concrete compressive strength (from 30 MPa to 60 MPa); (6) steel yield stress (from 250 MPa to 495 MPa). Results are depicted in the form of load versus mid-height deflection plots. Effects of various tapered angles, steel wall thicknesses, and L/H ratios on the ultimate load capacity, ductility and stiffness of the columns are studied. Effects of different load eccentricities, concrete compressive strengths and steel yield stresses on the ultimate load capacity of the columns are also examined. It is concluded from the study that the parameters considerably influence the structural behaviour of the columns.