• Title/Summary/Keyword: load levels

Search Result 822, Processing Time 0.023 seconds

Crack Opening Behavior of Concrete Reinforced with High Strength Reinforcing Steel

  • Soltani, Amir;Harries, Kent A.;Shahrooz, Bahram M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.253-264
    • /
    • 2013
  • A major difference between high-strength reinforcing steel and conventional steel in concrete is that the service-load steel stress is expected to be greater. Consequently, the service-load steel strains are greater affecting cracking behavior. A parametric study investigating crack widths and patterns in reinforced concrete prisms is presented in order to establish limits to the service-load steel stress and strain. Additionally, based on the results of available flexural tests, crack widths at service load levels were evaluated and found to be within presently accepted limits for highway bridge structures, and were predictable using current AASHTO provisions. A limitation on service-level stresses of $f_s{\leq}414$ MPa (60 ksi) is nonetheless recommended.

An experimental study on the determination of the crack initation load level in rock (암석내 균열성장개시점의 결정을 위한 실험적 연구)

  • Kim, Jaedong
    • Journal of Industrial Technology
    • /
    • v.9
    • /
    • pp.43-49
    • /
    • 1989
  • In this study, 3-point bending test for the mode I state and 4-point shear test for the mode II state were adopted to verify the crack initiation load level through comparing the test results of the acoustic emission and the ASTM testing criteria, using Jecheon granite, as the rock sample. The major result obtained in this study is that the crack initiation load levels obtained by using ASTM testing criteria and by measuring acoustic emissions showed analogous, roughly. However in case of demanding high safety, the crack initiation load level needs to be underestimated to the level that the crack begins to deform nonlinearly.

  • PDF

Experimental Study on Steering Torque Characteristics of Tractor (트랙터의 조타력 특성에 관한 실험적 연구)

  • Lee, Sang-Sik;Mun, Jung-Whan;Kang, Jin-Seok;Lee, Choong-Ho;Hong, Jong-Ho;Park, Won-Yeop
    • Journal of Biosystems Engineering
    • /
    • v.35 no.4
    • /
    • pp.231-238
    • /
    • 2010
  • The purpose of this paper was to investigate experimentally the steering torque characteristics of a tractor operated in various ground conditions. The experiments were conducted with the tractor reconstructed for steering torque test of the tractor at two different off-road conditions (ground-I and ground-II) and a on-road condition (ground-III), three different levels of tire inflation pressures (69 kPa, 138 kPa and 207 kPa), and four different levels of axle loads (4120 N, 4730 N, 5340 N and 5950 N). The results of this study are summarized as follows: 1) The steering torque was increased with the increase in steering angle for all experimental levels of ground conditions, axle loads and inflation pressures of tire. 2) As the axle load increased, the steering torque of the tractor increased for all ground conditions, and the increasing rate of the steering torque with the increase of axle load was greater at on-road than at off-road. 3) As the tire inflation pressure decreased, the steering torque increased. Also the increasing tendency of the steering torque with decreasing the tire inflation pressure showed that the harder the ground was, the larger the effect was. But for the soft ground condition, ground-I, no specific trend with inflation pressures was found. 4) Steering angle-steering torque relationship with ground conditions showed that the increasing rate of the steering torque was greater at on-road than off-road for small steering angle under 10 degree, and was greater at off-road than on-road for large steering angles over 10 degree.

Dynamic Snapping and Frequency Characteristics of 3-Free-Nodes Spatial Truss Under the Periodic Loads (주기 하중을 받는 3-자유절점 공간 트러스의 동적 불안정 현상과 주파수 특성)

  • Shon, Sudeok;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.149-158
    • /
    • 2020
  • The governing equation for a dome-type shallow spatial truss subjected to a transverse load is expressed in the form of the Duffing equation, and it can be derived by considering geometrical non-linearity. When this model under constant load exceeds the critical level, unstable behavior is appeared. This phenomenon changes sensitively as the number of free-nodes increases or depends on the imperfection of the system. When the load is a periodic function, more complex behavior and low critical levels can be expected. Thus, the dynamic unstable behavior and the change in the critical point of the 3-free-nodes space truss system were analyzed in this work. The 4-th order Runge-Kutta method was used in the system analysis, while the change in the frequency domain was analyzed through FFT. The sinusoidal wave and the beating wave were utilized as the periodic load function. This unstable situation was observed by the case when all nodes had same load vector as well as by the case that the load vector had slight difference. The results showed the critical buckling level of the periodic load was lower than that of the constant load. The value is greatly influenced by the period of the load, while a lower critical point was observed when it was closer to the natural frequency in the case of a linear system. The beating wave, which is attributed to the interference of the two frequencies, exhibits slightly more behavior than the sinusoidal wave. And the changing of critical level could be observed even with slight changes in the load vector.

Perceived Discomfort of Upper Body Postures with Varying External Loads (상체의 자세 변화에 따른 외부부하에 대한 불편도 영향 평가)

  • Choe, Dong-Sik;Park, Seong-Jun;Jeong, Ui-Seung;Choe, Jae-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.45-56
    • /
    • 2004
  • The purpose of this study is to evaluate perceived discomfort of working postures in terms of upper body (back, shoulder, and elbow) flexions when an external load varies. Eighteen subjects participated in an experiment of appraising perceived discomfort of varying upper body postures with three levels of external loads given. The ANOVA results showed that the perceived discomfort of upper body postures was significantly affected by the external load. It was also apparent that the interactions between external load and upper body posture were significant (p< 0.001). The result implies that a new posture classification scheme for workload assessment methods may be in need to reflect such interactions between external load and upper body posture. In order to support the statement, a regression model of perceived discomfort of upper body postures obtained from the experiment was developed and compared to that of perceived discomfort of seven work-related postures found in automobile assembly operations. The correlation coefficient between predicted and actual values of perceived discomfort was about 0.96. It is expected that the result help to properly estimate the body stress resluting from worker's postures and external loads and can be used as a valuable design guideline on preventing work-related musculoskeletal diseases in industry.

The Effect of Shoulder and Elbow Postures with External Loads on the Perceived Discomfort (어깨와 팔꿈치의 조합자세 및 외부부하가 지각불편도에 미치는 영향)

  • Kim, Dong-Jin;Na, Seok-Hee;Park, Guk-Mu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.145-151
    • /
    • 2006
  • The objective of this study is to investigate the perceived discomfort for postures combined with shoulder flexion/extension and elbow flexion, and external load. 12 healthy male undergraduate and graduate students participated in this experiment. Experimental variables were the shoulder flexion/extension angle(-20°, 0°, 45°, 90°, 135°), the elbow flexion angle (0°, 45°, 120°), and the external load(0, 1.5Kg, 3Kg) as independent variables and a whole body perceived discomfort using Borg's CR10 as a dependent variable. The subjects maintained the given posture for 60 seconds and then rated the perceived discomfort. The ANOVA results showed that all main factors and two-way interactions were statistically significant at α=0.05. As a result of regression analysis to examine the effect of external load on the perceived discomfort, the perceived discomfort linearly increased as the level of external load increased. Then, the effect of external load on the perceived discomfort was quantitatively classified into three levels based on the result of regression analysis.

Load and Safety Analysis for Plow Operation in Dry Fields (건답에서 쟁기작업의 부하특성 및 안전도 분석)

  • Lee, Ju-Yeon;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2019
  • This study derives load characteristics and analyzes the safety of plowshares operating in dry fields. We mounted a three-blade, reversible plow on a 23.7 kW tractor and measured the plow's tractive force as well as the torque from the engine output shaft on the rear axle under various working speeds (L4, M1, M2, M3). We chose a Korean test site of Seomyeon, Chuncheon with sandy soil texture, as determined using the USDA method. We constructed the load spectrum for torque and tractive force using measured data and derived the fatigue life of the plowshare from a stress-cycle (S-N) curve of the plow material. Our results show that the M3 gear maximizes the driving shaft torque loads and, applying the tractive force load spectrum, creates a cumulative damage sum of $4.14{\times}10^{-5}$. Considering sampling time, we estimate a fatigue life of 805 hours while using the M3 gear. When using the other working speeds, however, all of the stress levels fell within the endurance limits and, therefore, our model predicts infinite plowshare lifetimes. For this analysis, we used a yield strength of 1,079 MPa for the plowshare and static safety factors, analyzed using the maximum stress, between 6.83 and 8.63 under each working speed.

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

An experimental Study on the Confinement Effect of Concrete specimens confined by Interlocking Spirals (조합된 나선근으로 횡보강된 콘크리트의 횡보강효과)

  • 김진근;박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.306-311
    • /
    • 1994
  • Experimental research was carried out to investigate the confinement effect of concrete specimens confined by interlocking spirals subjected to the concentric axial compressive load. Main variables are the compressive strength of concrete with 2 levels(normal and high strength), the spacing of the spiral reinforcement, the yield strength of the spiral reinforcement with 2 levels and 4 different interlocking lengths. For the same volumetric ratio, the use of interlocking spirals is not as effective as the single spirals, provided that the spirals have the same diameter.

  • PDF

Measurements and Analysis of Truck Transport Vibration Characteristics on the Gyungbu and 88 Highway (경부고속도로와 88고속도로에 대한 트럭수송시의 진동 특성 측정 및 분석 연구)

  • Park, In-Sik
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • Measurements of accelerometer levels transmitted from the floor in commercials truck shipments were carried out transportation of 300 Kg-load from Gyungbu Highway(Waegouan-Seoul) to 88 Highway(Gwangju-Daegu). Different characteristics were observed the values measured the vibration levels with directions in the two Highway's as a function of road condition and truck speed. The results showed that the vibration levels of the Gyungbu Highway is much higher than those of the 88 Highway. A following analysis on the obtained values was used to get the acceleration spectral density (ASD) and power spectral density (PSD). For the entire transit route, the results showed that the level of vibration to vertical direction was significant effects for damaging the products carried compared to other directions such as longitudinal and transverse. This paper provides an updated history of measured characteristics of vibration levels for highways using mainly in domestic area.

  • PDF