• Title/Summary/Keyword: load impedance control

Search Result 105, Processing Time 0.023 seconds

Current Controlled PWN Inverter Using the Real-time Digital Feedback Control (실시간 디지털 궤환 제어(Deadbeat 제어)에 의한 전류 제어형 PWM 인버터에 관한 연구)

  • Lee, Jeong-Uk;Yoo, Ji-Yoon;Ahn, Ho-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.259-267
    • /
    • 1994
  • This paper describes a current control of a single-phase PWM inverter. The proposed PWM inverter utilizes the instantaneous control method which is based on the real-time digital feedback control and the microprocessor-based deadbeat control. The deadbeat current controller is proposed to control the output current regardless of load component variations by the same method as voltage control. That is, in current control, with a very short sampling time and the successive feedback of the output current, the load current is mainly effected by the magnitude of load impedance rather than load component, the load current is mainly effected by the magnitude of load impedance rather than load component. Therefore, by treating the load as an impedance, the system's order is reduced and the instantaneous current control using the proposed deadeat controller is simplified.

A Design of Homopolar Generator System Considering Instability with Negative Characteristics Load (부성부하와의 발진을 고려한 단극발전기 시스템 설계)

  • Kim, In-Soo;Seong, Se-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.449-451
    • /
    • 2008
  • This paper studies the instability between homopolar generator and constant power load with negative impedance characteristics, provides the design method of homopolar generator system which overcomes the instability. In case of magnitude and phase of impedance of source and load mismatch, control instability of source can occur. For the safety of phase of load impedance, the gain of P, I controller with sufficient phase margin is applied through analysis on the simulation model of generator system, and the gain limit of load impedance is ensured by limitation of the gain margin of generator system. The stability of power system can be increased by considering and analyzing the impedance of source and load.

  • PDF

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

The Structure of a Powered Knee Prosthesis based on a BLDC Motor and Impedance Control using Torque Estimation on Free Swing (BLDC 모터 기반 동력 의족의 구성과 토크 추정을 활용한 유각기의 임피던스 제어)

  • Gyeong, Gi-Yeong;Kim, Jin-Geol;Lee, Young-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.407-412
    • /
    • 2015
  • This paper presents the design of a lab-built powered knee prosthesis based on a BLDC motor, a sensored impedance control using a force sensor, and a sensorless impedance control through torque estimation. Firstly, we describe the structure of the lab-built powered knee prosthesis and its limitations. Secondly, we decompose the gait cycle into five stages and apply the position-based impedance control for the powered knee prosthesis. Thirdly, we perform an experiment for the torque estimation and the sensorless impedance control of the prosthesis. The experimental results show that we can use the torque estimation to control the low impedance during the swing phase, although the estimated torque data has a delay compared with the measured torque by a load cell.

The Development of High-Current Power Supply System for Electrolytic Copper Foil

  • Luo, An;Ma, Fujun;Xiong, Qiaopo;He, Zhixing
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.399-410
    • /
    • 2015
  • A 6.5 V/50 kA high-frequency switching power supply (HSPS) system composed of 10 power modules is developed to meet the requirements of copper-foil electrolysis. The power module is composed of a two-leg pulse width modulation (PWM) rectifier and a DC/DC converter. The DC/DC converter adopts two full-wave rectifiers in parallel to enhance the output. For the two-leg PWM rectifier, the ripple of the DC-link voltage is derived. A composite control method with a ripple filter is then proposed to effectively improve the performance of the rectifier. To meet the process demand of copper-foil electrolysis, the virtual impedance-based current-sharing control method with load current full feedforward is proposed for n-parallel DC/DC converters. The roles of load current feedforward and virtual impedance are analyzed, and the current-sharing control model of the HSPS system is derived. Virtual impedance is used to adjust the current-sharing impedance without changing the equivalent output impedance, which can effectively reduce current-sharing errors. Finally, simulation and experimental results verify the structure and control method.

A Study on the Parallel Operation Control Technique of On-line UPS System (무정전전원장치의 병렬운전 제어기법에 관한 연구)

  • 곽철훈;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.585-592
    • /
    • 2003
  • The parallel operation system of UPS is used to increase reliability of power source at critical load. But parallel UPS system has a few defects, impedance is different from each other and circulating current occurs between UPSs, due to line impedance and parameter variation, though controlled by the same synchronization signal. According to such characteristic of parallel UPS, balanced load-sharing control is the most important technique in parallel UPS operation. In this paper, a novel power deviation compensation algorithm is proposed. it is composed of voltage controller to compensate power deviation that be calculated by using active and reactive current deviation between Inverters on synchronous d-q reference frame.

The EMTP Analysis and Characteristics of Load Impedance on Various Electrode length, Pulse Repetition in Pulse Corona Discharging (펄스코로나 방전의 전극길이, 펄스반복율에 따른 부하 임피던스 변화 특성 및 EMTP 해석)

  • Jeong, Jong-Han;Song, U-Jeong;Jeon, Jin-An;Jeong, Hyeon-Ju;Hong, Jeong-Hwan;Kim, Hui-Je
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.4
    • /
    • pp.158-163
    • /
    • 2002
  • The pulsed Power system has been widely used to many applications, such as E/P(Electrostatic Precipitator), DeNOx/DeSOx power system, often generator, etc. In this paper, we study EMTP analysis and characteristics of critical voltage and load in impedance on various electrode length of pulse corona. To obtain a stable pulse voltage, we designed a compact pulse generator switched MOSFET and tested their characteristics by adjusting electrode length and pulse repetition. As a re sult, critical voltage of pulse corona and load impedance on increasing electrode length were decreased. These results indicate we can control critical voltage of pulse corona and suppress arc discharging between two electrodes.

Frequency Follow-up Control System of Resonant Load MOSFET Inverter using PLL (PLL을 이용한 공진부하 MOSFET 인버어터의 주파수 추종제어계)

  • Kim, Joon-Hong;Joong-Hwan kim
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.7
    • /
    • pp.272-277
    • /
    • 1986
  • The system that follows to the resonance frequency of high frequency MOSFET inverter and varies according to the changes of load characteristics is proposed. Also we suggested a method how to select the resonant load type between series and parallel circuit for a given inverter type. It leads to the conclusion that in the case of high impedance loads, parallel resonant circuits are preferable, on the other hand, for low impedance loads, series resonant circuits are more preferable. For frequency tracking, a PLL circuit is used as main control element to detect the phase difference of current and voltage of load. The realized apparatus composed of control circuit and voltage type full-bridged MOSFET elements as main parts of inverter. A stable frequency follow-up characteristics are obtained for 1.2MHz, 1.5KW high frequency output and power is always supplied to the load with unity power factor.

  • PDF

The Parallel Operation Control of Static UPSs (정지형 UPS의 병렬운전 제어)

  • Min, Byeong-Gwon;Won, Chung-Yun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.7
    • /
    • pp.363-368
    • /
    • 1999
  • The parallel operation system of multiple uninterruptible power supplies(UPSs) is used to increase power capacity of the system or to secure higher reliability at critical loads. In the parallel operation of the two UPSs, the load-sharing control to maintain the current balance between them is a key technique. Because a UPS has low output impedance and quick response characteristics, in case of an unbalanced load inverter output current changes very rapidly and thereby can instantaneously reach an overload condition. In this study, high precise load-sharing controller is proposed and implemented for the parallel operation system of two UPSs with low impedance characteristics and this controller controls the frequency and the voltage to minimize the active power component and the reactive power component which are gotten from the current difference between two UPSs. And then a good performance of the proposed method is verified by experiments in the parallel operation system with two 40KVA UPSs.

  • PDF

Voltage Distortion Suppression for Off-grid Inverters with an Improved Load Current Feedforward Control

  • Geng, Yiwen;Zhang, Xue;Li, Xiaoqiang;Wang, Kai;Yuan, Xibo
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.716-724
    • /
    • 2017
  • The output voltage of an off-grid inverter is influenced by load current, and the voltage harmonics especially the 5th and 7th are increased with nonlinear loads. In this paper, to attenuate the output voltage harmonics of off-grid inverters with nonlinear loads nearby, a load current feedforward is proposed. It is introduced to a voltage control loop based on the Positive and Negative Sequence Harmonic Regulator (PNSHR) compensation to modify the output impedance at selective frequencies. The parameters of the PNSHR are revised with the output impedance of the off-grid inverter, which minimizes the output impedance of the off-grid inverter. Experimental results verify the proposed method, showing that the output voltage harmonics caused by nonlinear loads can be effectively suppressed.