• Title/Summary/Keyword: load history

Search Result 578, Processing Time 0.026 seconds

DEVELOPMENTAL AND CLINICAL CHARACTERISTICS IN CHILDREN WITH NOCTURNAL ENURESIS : RESULTS OF A MULTICENTER STUDY (야뇨증 환아들의 심리사회적 특성에 대한 다기관 연구 : 발달학적 및 임상적 특성을 중심으로)

  • Cho Soo-Churl;Shin Min-Sup;Hwang Jun-Won;Han Sang-Won;Park Kwan-Hyun;Lee Sang-Don;Kim Kyung-Do;Kim Kun-Suk;Suh Hong-Jin;Lee Yoo-Sik;Chung Jae-Yong;Kim Young-Kyoon;Kim Jae-Won
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.17 no.1
    • /
    • pp.32-39
    • /
    • 2006
  • Objectives : The aim of this study was to examine the developmental and clinical characteristics associated with nocturnal enuresis in Korean children. Methods : Three hundred eighteen children with nocturnal enuresis, together with their parents, completed a parent questionnaire consisting of a Child Behavior Checklist(CBCL). Data related to the prenatal, perinatal and developmental history, past and current medical history were collected. Ninety-three normal students were selected as the control group. Results : The nocturnal enuresis group attained diurnal and nocturnal urinary control significantly later than those in the normal control group.49.2% of the children with nocturnal enuresis had the family history of nocturnal enuresis. Daytime incontinence was present in 41.3% of the nocturnal enuresis group. The percentages of sleep-related disturbances were significantly higher in the nocturnal enuresis group when compared to the normal control group.42.6% of the children with nocturnal enuresis experienced pharmacotherapy, and 0.4% experienced enuresis alarms. Conclusion : The results of this study suggest that children with nocturnal enuresis in Korea have a high genetic load and a possibility of developmental delay, which supports the neurodevelopmental point of view with regard to the etiology of nocturnal enuresis. The physicians in Korea prefer pharmacological interventions to alarm interventions in treating Korean children with nocturnal enuresis.

  • PDF

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

Development of Optimal Train Operation System in Bottle-neck Section According to the Opening of High Speed Railway in Seoul Metropolitan Area (수도권 고속철도개통에 따른 고속선 병목구간 최적열차운행 체계 연구)

  • Chun, Chunggeun;Chung, Sungbong;NamKung, Baekkyu
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.631-637
    • /
    • 2012
  • New Opening of Suseo-Pyeongteak High Speed Railway (HSR) will be a new leap in the Korean railway history. However if this section of HSR line around Seoul Metropolitan Area opens, the confluence of new HSR and existing HSR line in Pyeongteak-Osong section will cause a bottle neck problem. In other words, the opening of Suseo-Pyeongteak HSR line will make the capacity of track reach the limit and the section of railroad between Pyeongteak and Osong will be saturated. This will also make such troubles as restricting the number of train which stops at Cheonan-Asan station. In this study, based on the train assignment theory of TVM430 signal system, the methods of calculating headway and number of train are reviewed and the plan for application of optimal operation pattern during peak hour between Pyeongteak-Osong section is also suggested. To remove the bottle neck problem in this HSR section, 3 alternatives are suggested and the expected effects and problems of each alternative are also analyzed. The results show that the troubles caused by excess of track capacity can be removed without any additional cost if the minimum headway in operating system for HSR is adopted in this section. In the future, if these alternatives are considered to the long-term plan for operating train and signal systems, this will improve the efficiency of train operation, which can remove the bottle neck in the HSR line.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part B: Analysis for the Effect of Explosion Loading Time According to the Natural Period for Target Structures - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part B: 고유주기에 따른 폭발하중 지속시간의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.197-205
    • /
    • 2015
  • Offshore structures for the gas production are exposed to the risk of gas leaks, and gas explosions can result in fatal damages to the primary structures as well as secondary structures. To minimize the damage from the critical accidents, the study of the dynamic response of structural members subjected to blast loads must be conducted. Furthermore, structural dynamic analysis has to be performed considering relationships between the natural frequency of structural members and time duration of the explosion loading because the explosion pressure tends to increase and dissipate within an extremely short time. In this paper, the numerical model based on time history data were proposed considering the negative phase pressure in which considerable negative phase pressures were observed in CFD analyses of gas explosions. The undamped single degree of freedom(SDOF) model was used to characterize the dynamic response under the blast loading. A blast wall of FPSO topside was considered as an essential structure in which the wall prevents explosion pressures from the process area to utility and working areas. From linear/nonlinear transient analyses using LS-DYNA, it was observed that dynamic responses of structures were influenced by significantly the negative time duration.

Influence of Bubble Sheet Applying Methods on Temperature of Exposed Joint Rebar at Wall Surface of Load-Bearing Wall Structure Building During Winter (동절기 벽식구조 건축물 벽부분의 버블시트 포설방법 변화가 이음부 노출철근의 온도에 미치는 영향)

  • Han, Cheon-Goo;Lee, Jea-Hyeon;Kim, Min-Sang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • In this research, the surface covered curing method using the double-layered bubble sheet was evaluated. This double-layered bubble sheet has outstanding insulating performance with its low heat conductivity and high economic feasibility with its high durability. However, in the case of wall-typed building construction, the area of exposed rebar is curious on curing performance with the double-layered bubble sheet in spite of the double-layered bubble sheet showed favorable performance for slab. Therefore, in this research, regarding the actually constructed wall-typed apartment building, the most efficient curing method was suggested based on the evaluation of curing performance depending on temperature distribution depending on various location of covered or exposed rebar. As a result, the D method was determined as the most efficient curing method without any concern of early-age frost damage. However, by considering easiness of construction, the B method of covering the pieced double-layered bubble sheet on gap between rebars can be another option of desired result.

State of the Art of the Cyclic Plasticity Models of Structural Steel (구조용 강재의 반복소성모델 분석 연구)

  • Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.735-746
    • /
    • 2002
  • The task of plastic theory is twofold: first, to set up relationships between stress and strain that adequately describe the observed plastic deformation of metals, and second, to develop techniques for using these relationships in studying of the mechanics of metal forming processes, and the anlaysis and design of structures. One of the major problems in the theory of plasticity is to describe the behavior of work-hardening materials in the plastic range for complex loading histories. This can be achieved by formulating constitutive laws either in the integral or differential forms. To adequately predict the response of steel members during cyclic loading, the hardening rule must account for the features of cyclic stress-strain behavior. Neithe of the basic isotropic and kinematic hardening rules is suitable for describing cyclic streess-strain behavior, although a kinematic hardening rule describes the nearly linear portions of the stabilized hystersis loops. There is also a limited expansion of the yield surface as predicted by the isotropic hardening rule. Strong ground motions or wind gusts affect the complex and nonproportional loading histories in the inelastic behavior of structues rather than the proportional loading. Nonproportional loading is defined as externally applied forces on the structure, with variable ratios during the entire loading history. This also includes the rate of time-dependency of the loads. For nonproportional loading histories, unloading may take place along a chord instead of the radius of the load surface. In such cases, the shape of the stress-strain curve has to be determined experimentally for all non-radial loading conditions. The plasticity models including two surface models ae surveyed based on a yield surface and a bound surface that represent a state of maximum stress. This paper is concerned with the improvement of a plasticity models of the two-surface type for structural steel. This is follwed by an overview of plasticity models on structural steel. Finally the need for further research is identified.

Economic Analysis of Long-life Asphalt Pavements using KoPMS (한국형 포장관리시스템을 활용한 장수명 아스팔트 포장의 경제성 분석)

  • Do, Myungsik;Kwon, Sooahn;Baek, Jongeun;Choi, Seunghyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.19-28
    • /
    • 2016
  • PURPOSES : Long-life asphalt pavements are used widely in developed countries. In order to be able to devise an effective maintenance strategy for such pavements, in this study, we evaluated the performance of the long-life asphalt pavements constructed along the national highways in South Korea. Further, an economic evaluation of the long-life asphalt pavements was performed based on a life-cycle cost analysis. We aimed to devise a model for evaluating the performance of long-life asphalt pavements using the national highway pavement management system (PMS) database as well as for analyzing the economic feasibility of such pavements, in order to promote their use in South Korea. METHODS : The maintenance history and pavement performance data were obtained from the national highway PMS database. The pavement performances for a total of 292 sections of 10 lanes (5 northbound lanes and 5 eastbound lanes) of national highways were used in this study. Models to predict the performances of hot mix asphalt (HMA) and long-life asphalt pavements under two distinct traffic conditions were developed using a simple regression method. Further, the economic feasibility of long-life asphalt pavements was evaluated using the Korea Pavement Management System (KoPMS). RESULTS : We developed service-life prediction models based on the traffic volume and the equivalent of single-axle load and found that long-life asphalt pavements have service lives 50% longer than those of HMA pavements. Further, the results of the economic analysis showed that long-life asphalt pavements are superior in terms of various economic indexes, including user cost, delay cost, total cost, and user benefits, even though their maintenance cost is higher than that of HMA pavements. A comparison of the economic feasibilities of the various groups showed that group A is superior to HMA pavements in all aspects except in terms of the maintenance criterion (crack 20% or higher) as per the NPV index. However, the long-life asphalt pavements in group B were superior in terms of the maintenance criterion (crack 25% or higher) regardless of the economic feasibility. CONCLUSIONS : The service life of long-life asphalt pavements was found to be approximately 50% longer than that of HMA pavements, regardless of the traffic volume characteristics. The economic feasibility of long-life asphalt pavements was evaluated based on the KoPMS. The results of the economic analysis were the following: long-life asphalt pavements are exceptional in terms of almost all factors, such as user cost, delay cost, total cost, and user benefit; however, the exception is the maintenance cost. Further, the economic feasibility of the long-life asphalt pavements in group B was found to be better than that of the HMA pavements (crack 25% or higher).

Seismic Fragility of Sewage Pipes Considering Site Response in Korean, Seoul Site (국내 서울지역의 부지응답해석을 고려한 하수도관의 지진취약도)

  • Shin, Dea-Sub;Kim, Hu-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.33-38
    • /
    • 2017
  • The number of damaged lifeline structures have been increasing with urban acceleration under earthquakes. To predict the damage, damage mitigation technology of lifeline structures should be analyzed using damage prediction technology. Therefore, in this paper, the degree of the fragility of structures under an earthquake was evaluated stochastically through an evaluation of the seismic fragility. The aim was to develop damage prediction technology of sewage pipes among the lifeline facilities. The site response was performed using the data from 158 boreholes in Seoul and 7 real earthquake waves to determine the responses in real urban areas. The seismic fragility was deduced through a total of 29822 time history analysis. In addition, sewer pipes were evaluated and the persisting period was passed by applying the research results of strength reduction which is due to sulphate erosion. As a result, the difference in failure probability between 300 and 800 with the smaller diameter of the representative pipes was approximately double and the size of the pipes has a significant effect on the seismic fragility function. Moreover, the failure probability of a seismic load increases by up to 10 fold as the strength reduction rate increases. The results of this study can be used as a means of predicting the damage and countermeasures of sewer pipes and might be reflected in the seismic design of underground facilities.

The Characteristics of the Set-up Effect of Driven Piles (타입 말뚝의 지지력 증가효과 특성)

  • 조천환
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.235-246
    • /
    • 2003
  • Since the study of Lee et al.(1994) there have been some case studies on the set-up effect of driven piles in Korea country. However, comprehensive examination on the analyses of the set-up effect with various testing data has not been carried out. In particular, the analysis of the influence of soil type and pile shape on the set-up effect has not been reported. It is necessary to analyse the test results of production piles in order to apply the set-up effect of driven piles for the field engineering. In this study some test piling and analyses were performed to give basic information to the piling design as well as the research on the set-up effect in sandy soils. The analyses on the set-up effect were performed with the monitoring data obtained from the high-strain dynamic loading tests. It was shown that the set-up effect of driven piles was not only affected by soil type but also by soil formation history It turned out that the set-up effect in sandy soils was considerable one that should not be ignored in the field, and that the bearing capacity increase of pile is mainly caused by the increase of shaft resistance. It was shown that the set-up effect of closed pile was larger than that of opened pile in clayey soils, while the set-up effect of opened pile was larger than that of closed pile in sandy soils.

Evaluation of Behavior of Direct Fixation Track and Track Girder Ends on Yeongjong Grand Bridge (영종대교 강직결 궤도 및 종형거더 단부의 거동 분석)

  • Choi, Jung-Youl;Chung, Jee-Seung;Kim, Jun-Hyung;Lee, Kyu-Yong;Lee, Sun-Gil
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.45-51
    • /
    • 2016
  • The purpose of this study is to investigate the influence of train-induced end rotation of simple supported track girder on the performance of a direct fixation track system (DFTS) in Yeongjong grand bridge. In this study, the influences of deflection of a DFTS and track girder on dynamic rail-track girder interaction forces for the track girder ends currently employed in airport express lines were assessed by performing field tests using actual vehicles running along the service lines. Therefore, the dynamic displacement of rail and track girder and the fastener stress on the center and ends sections of DFTS were measured for two different trains (AREX and KTX) running in Yeongjong grand bridge. A three-dimensional finite element analysis (FEA) model using the time-history function based on the design wheel load was used to predict the train-induced track and track girder displacement, and the FEA and field test results were compared. The analytical results reproduced the experimental results well within about 3-7% difference in the values. Therefore, the FEA model of DFTS on track girder is considered to provide sufficiently reliable FEA results in the investigation of the behavior of DFTS. Using the analytical and experimental results, the influence of train-induced end rotation of simple supported track girder on the interaction behavior of rail and track girder installed on a simple supported track girder ends, i.e., upward displacement of rail-track girder and the fastener stress, was investigated. It was found that the train-induced end rotation effect of track girder was not significantly affected by the upward displacement of rails and the fastener stresses of track girder ends. Further, the interaction behavior of rail and track girder were similar to or less than that of the general railway bridge deck ends, nevertheless the vertical displacement of track was higher than that of conventional DFTS on the general railway bridge. From the results, the dynamic responses of the DFTS on track girder ends were not significantly affected by the safety and stability of DFTS ends.