• Title/Summary/Keyword: load effects

Search Result 3,935, Processing Time 0.039 seconds

Rainfall Effects on Discharged Pollution Load in Unit Watershed Area for the Management of TMDLs (수질오염총량관리 배출부하량에 대한 강우영향 분석연구)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.648-653
    • /
    • 2010
  • Discharged pollution load for the management of Total Maximum Daily Loads (TMDLs) is calculated on the basis of rainfall data for reference year. Rainfall has an influence on discharged pollution load in unit watershed with combined sewer system. This study reviewed the status of discharged pollution load and rainfall conditions. We also investigated rainfall effects on discharged pollution load by analyzing change of the load in accordance with increase of rainfall. The change ratio of discharged pollution load was 18.6% while inflow load only 5.8% for 5 years from 2004 to 2008 in Daejeon district. The greatest rainfall and rain days were over 2 times than the least during the period. This change in rainfall could have great effect on discharged pollution load. The analysis showed that discharged pollution load increased 2.1 times in case rainfall increased 2 times and 1.2 times in case rain days increased 2 times. Rainfall effects, therefore, should be considered to make resonable evaluation of discharged pollution load in the assessment of annual performances.

Statistical Analysis of Longitudinal Load Effects in Girder Bridges (거더교량의 종방향 하중효과의 확률론적 분석)

  • Oh, Byung-Hwan;Lew, Young;Choi, Young-Chul;Lee, Jun-Hyuk;Kim, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.865-870
    • /
    • 2001
  • An effective live load model for analyzing probable maximum live load effects in longitudinal direction such as moment and shear was developed. The main procedure of this live load model is composed of two parts. Firstly, determination of the appropriate influence lines, and secondly, application of the characteristics of vehicles and traffic patterns. Through this procedure, probabilistic distributions of maximum probable load effects are deduced in the form of probability density function (PDF) or cumulative density function (CDF). The proposed live load model is not limited by bridge types(number of spans or girders) and can consider local or global deterioration of bridges in the analysis. Besides, load effects can be determined at any section without restrictions.

  • PDF

Estimating peak wind load effects in guyed masts

  • Sparling, B.F.;Wegner, L.D.
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.347-366
    • /
    • 2007
  • Guyed masts subjected to turbulent winds exhibit complex vibrations featuring many vibration modes, each of which contributes to various structural responses in differing degrees. This dynamic behaviour is further complicated by nonlinear guy cable properties. While previous studies have indicated that conventional frequency domain methods can reliably reproduce load effects within the mast, the system linearization required to perform such an analysis makes it difficult to relate these results directly to corresponding guy forces. As a result, the estimation of peak load effects arising jointly from the structural action of the mast and guys, such as leg loads produced as a result of guy reactions and mast bending moments, is uncertain. A numerical study was therefore undertaken to study peak load effects in a 295 m tall guyed mast acted on by simulated turbulent wind. Responses calculated explicitly from nonlinear time domain finite element analyses were compared with approximate methods in the frequency domain for estimating peak values of selected responses, including guy tension, mast axial loads and mast leg loads. It was found that these peak dynamic load effects could be accurately estimated from frequency domain analysis results by employing simple, slightly conservative assumptions regarding the correlation of related effects.

A Study on a Methodology of Determining an Appropriate Load Power Factor Effectively by the Use of Reactive Power Sensitivity and Load Duration Curve (무효전력 민감도와 부하지속곡선을 활용한 적정 부하역률의 효과적인 산정 기법에 관한 연구)

  • Lee, Byung Ha;Hwang, Sung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1782-1790
    • /
    • 2012
  • In this paper, a methodology to use load duration curve and the reactive power factor sensitivity of generation cost is proposed for analyzing the effects of load power factor effectively. A great deal of cases of power systems are classified into several patterns according to the characteristics using load duration curve, and the overall effects of load power factor are assessed by integrating the analysis results of load power factor in all the patterns. The reactive power sensitivity of generation cost and the integrated costs such as generation cost, investment cost, voltage variation penalty cost and CO2 emission cost are used for determining an appropriate load power factor. A systematic procedure for effective analysis of load power factor is presented. It is shown through the application to the practical power system of KEPCO(Korea Electric Power Corporation)that the effects of load power factor can be analyzed effectively using load duration curve and reactive power factor sensitivity.

Effects of Motion Repetition and External Load Depending on Joint Motions (관절 동작에 따른 동작 반복 및 외부 부하 영향에 관한 연구)

  • Dohyung Kee
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.107-111
    • /
    • 2023
  • This study aims to empirically investigate effects of motion repetition and external load according to joint motion on discomfort through an experiment. Eighteen college students (female: 9; male: 9) participated in an experiment measuring perceived discomfort using the Borg CR10. Joint(wrist, elbow, shoulder and trunk) motion, its repetition and external load were adopted as independent variables. The results showed that all three independent variables were statistically significant on discomfort. Participants' sex also significantly affected discomfort obtained in the experiment. While the interactions of joint motion and repetition, and joint motion and external load were not significant at α = 0.05, that of motion repetition and external load was significant. Based on the experimental results, four regression equations by the joints involved were presented, which could be used as a tool for evaluating postural loads by the joints. It may be postulated that based on the results of this study, scoring systems of RULA and REBA, and those of OWAS and REBA underestimates effects of motion repetition and external load, respectively. It is expected that the results of this study will be used as a basic data for developing an observational method properly reflecting the effects of motion repetition and external load.

Analysis of hurricane directionality effects using event-based simulation

  • Huang, Zhigang;Rosowsky, David V.
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.177-191
    • /
    • 2000
  • This paper presents an approach for evaluating directionality effects for both wind speeds and wind loads in hurricane-prone regions. The focus of this study is on directional wind loads on low-rise structures. Using event-based simulation, hurricane directionality effects are determined for an open-terrain condition at various locations in the southeastern United States. The wind speed (or wind load) directionality factor, defined as the ratio of the N-year mean recurrence interval (MRI) wind speed (or wind load) in each direction to the non-directional N-year MRI wind speed (or wind load), is less than one but increases toward unity with increasing MRI. Thus, the degree of conservatism that results from neglecting directionality effects decreases with increasing MRI. It may be desirable to account for local exposure effects (siting effects such as shielding, orientation, etc.) in design. To account for these effects in a directionality adjustment, the factor described above for open terrain would need to be transformed to other terrains/exposures. A "local" directionality factor, therefore, must effectively combine these two adjustments (event directionality and siting or local exposure directionality). By also considering the direction-specific aerodynamic coefficient, a direction-dependent wind load can be evaluated. While the data necessary to make predictions of directional wind loads may not routinely be available in the case of low-rise structures, the concept is discussed and illustrated in this paper.

the Design Methodology of Minimum-delay CMOS Buffer Circuits (최소 지연시간을 갖는 CMOS buffer 회로의 설계 기법)

  • 강인엽;송민규;이병호;김원찬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.5
    • /
    • pp.509-521
    • /
    • 1988
  • In the designs of integrated circuits, the buffer circuits used for driving a large capacitive load from minimum-structured logic circuit outputs have important effects upon system throughputs. Therefore it is important to optimize the buffer circuits. In this paper, the principle of designing CMOS buffer circuits which have the minimum delay and drive the given capacitive load is discussed. That is, the effects of load capacitance upon rise time, fall time, and delay of the CMOS inverter and the effects of parasitic capacitances are finely analysed to calculate the requested minimum-delay CMOS buffer condition. This is different from the method by C.A. Mead et. al.[2.3.4.]which deals with passive-load-nMOS buffers. Large channel width MOS transistor stages are necessary to drive a large capacitive load. The effects of polysilicon gate resistances of such large stages upon delay are also analysed.And, the area of buffer circuits designed by the proposed method is smaller than that of buffer circuits designed by C.A. Mead's method.

  • PDF

Improving the linear flexibility distribution model to simultaneously account for gravity and lateral loads

  • Habibi, AliReza;Izadpanah, Mehdi
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • There are two methods to model the plastification of members comprising lumped and distributed plasticity. When a reinforced concrete member experiences inelastic deformations, cracks tend to spread from the joint interface resulting in a curvature distribution; therefore, the lumped plasticity methods assuming plasticity is concentrated at a zero-length plastic hinge section at the ends of the elements, cannot model the actual behavior of reinforced concrete members. Some spread plasticity models including uniform, linear and recently power have been developed to take extended inelastic zone into account. In the aforementioned models, the extended inelastic zones in proximity of critical sections assumed close to connections are considered. Although the mentioned assumption is proper for the buildings simply imposed lateral loads, it is not appropriate for the gravity load effects. The gravity load effects can influence the inelastic zones in structural elements; therefore, the plasticity models presenting the flexibility distribution along the member merely based on lateral loads apart from the gravity load effects can bring about incorrect stiffness matrix for structure. In this study, the linear flexibility distribution model is improved to account for the distributed plasticity of members subjected to both gravity and lateral load effects. To do so, a new model in which, each member is taken as one structural element into account is proposed. Some numerical examples from previous studies are assessed and outcomes confirm the accuracy of proposed model. Also comparing the results of the proposed model with other spread plasticity models illustrates glaring error produced due to neglecting the gravity load effects.

Behavior of RC Beam subjected to Cyclic Load during CFS Strengthening (CFS 보강 중 주기하중을 받은 RC보의 거동)

  • Cho Il Lae;Jang Hee Suk;Lee Hong Ju;Kim Hee Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.481-484
    • /
    • 2004
  • This study was performed to analyze effect of cyclic load during CFS curing on the behavior of RC beam strengthened with CFS. In the experiment, five different beginning times of cyclic load and two different strengthening amounts of CFS were chosen for experiment parameters. From the experimental results, it could be known that the cyclic load during CFS curing might give detrimental effects to the CFS strengthening effects compared to without cyclic load cases.

  • PDF

Statistical Analysis of Transverse Load Effects in Girder Bridges (거더교량의 횡방향 하중효과의 확률론적 분석)

  • Oh, Byung-Hwan;Lew, Young;Choi, Young-Chul;Lee, Jun-Hyuk;Kim, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.859-864
    • /
    • 2001
  • An effective live load model for analyzing probable maximum live load effects such as moment and shear in transverse direction was developed. The main procedure of this live load model is composed of four parts, i.e., firstly, determination of the appropriate influence lines in longitudinal direction, secondly, application of the characteristics of vehicles and traffic patterns in longitudinal direction, thirdly, determination of the appropriate influence lines in transverse direction, and fourthly, application of the characteristics of vehicles and traffic patterns in transverse direction. Through this procedure, the probabilistic distributions of maximum probable load effects are deduced in the form of probability density function (PDF) and/or cumulative density function(CDF). This live load model is able to consider local or global deterioration of bridges in the structural analysis.

  • PDF