• 제목/요약/키워드: load distribution factors

검색결과 286건 처리시간 0.023초

Load Distribution Factors for Hollow Core Slabs with In-situ Reinforced Concrete Joints

  • Song, Jong-Young;Kim S, Elliott;Lee, Ho;Kwak, Hyo-Gyoung
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.63-69
    • /
    • 2009
  • This paper provides the engineer with a simple design method dealing with situations arise where in-situ reinforced concrete joints are cast between hollow core units. Using finite element method, hollow core slabs with wide in-situ RC joints under point load and line loads are analysed. In addition, some important behavioural characteristics of the floor slab subjected to line and point loads are investigated. In-situ reinforced concrete joint causes reduction of load distribution for remote units because distance to the remote units from the point of load is increased, while the portion of load distribution carried by loaded unit increases. Also, it was turned out load distribution factors for point load and line loads are almost same. Finally, we suggest a simple analytical method, which can determine load distribution factors using normalized deflections by regression analysis for design purposes.

I형 프리스트레스트 콘크리트 거더교의 활하중 분배 (Live Load Distribution in Prestressed Concrete I-Girder Bridges)

  • 김광양;강대희;이환우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.288-293
    • /
    • 2008
  • The standard prestressed concrete I-girder bridge (PSC I-girder bridge) is one of the most prevalent types for small and medium bridges in Korea. When determining the member forces in a section to assess the safety of girder in this type of bridge, the general practice is to use the simplified practical equations or the live load distribution factors proposed in design standards rather than the precise analysis through the finite element method or so. Meanwhile, the live load distribution factors currently used in Korean design practice are just a reflection of overseas research results or design standards without alterations. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section of standard PSC I-girder bridges and the design strength of concrete. In this study, to develop an equation of the live load distribution factors, a parametric analysis and sensitivity analysis were carried out on the parameters such as width of bridge, span length, girder spacing, width of traffic lane, etc. Then, an equation of live load distribution factors was developed through the multiple linear regression analysis on the results of parametric analysis. When the actual practice engineers design a bridge with the equation of live load distribution factors developed here, they will determine the design of member forces ensuring the appropriate safety rate more easily. Moreover, in the preliminary design, this model is expected to save much time for the repetitive design to improve the structural efficiency of PSC I-girder bridges.

  • PDF

PSC 거더교의 하중횡분배에 관한 연구 (Lateral Load Distribution for Prestressed Concrete Girder Bridge)

  • 박문호;박정활;김진규
    • 한국산업융합학회 논문집
    • /
    • 제4권2호
    • /
    • pp.157-166
    • /
    • 2001
  • The purpose of this study is to examine the accuracy of the code provisions on lateral load distribution factors of prestressed concrete girder bridges. Most designers in Korea use the lever method or lateral load distribution formula in the existing design codes. However, the methods do not account for the effect of bridge skew or direction of diaphragm. Therefore, this study analysed the prestressed concrete girder bridge with grillage model for various girder spacings, directions of diaphragms, span lengths, and skews, and compared the results with those of existing design code. It has been found that lateral load distribution factors were proportional to the girder spacing while they were not significantly affected by the change of span length, direction of diaphragm, and skew. For bending moments, lateral load distribution factors from the grillage analysis were 60%~68% of those from Korean bridge design code. Therefore, the code provisions result in very conservative design. For support reactions, however, lateral load distribution factors from the grillage analysis were slightly greater than those from Korean bridge design code. Therefore, the capacity of bearings of the bridge with a large skew should be determined by grillage analysis.

  • PDF

교량 구조의 하중분배 효과에 관한 연구 (A Study on Load distribution Effect for Bridge Structures)

  • 정철헌;오병환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.234-239
    • /
    • 1992
  • Design live load and girder distribution factors play an important role in the current design procedures. The fraction of vehicle load effect transferred to a single member may be selected in accordance with current KBDC. However, the specified values, both design load and distribution factors involve considerable inaccuracies, These inaccuracies relate to the uncertainties of the structural analysis, especially any bias and scatter which drives from the use of simplified load distribution factors. In this study , based on several field measurement and finite element analysis, live load distribution effects of current KBDC are evaluated. The final values of the bias and coefficient of variation of "g"according to bridge type are determined. The bridge types are reinforced concrete slab, prestressed concrete girder and steel l-beam.el l-beam.

  • PDF

I형 프리스트레스트 콘크리트 거더교의 활하중 분배 (Live Load Distribution for Prestressed Concrete I-Girder Bridges)

  • 김광양;이환우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.119-120
    • /
    • 2009
  • I 형 프리스트레스트 콘크리트 거더교에서 사용되는 활하중 분배계수는 대부분 외국의 설계기준이 반영된 것들이다. 따라서 교량단면과 부재의 설계 기준강도 등을 고려한 우리나라의 설계여건에 적합한 활하중 분배계수식의 개발이 필요하였다. 본 연구에서는 분배계수를 결정하는 주된 변수들을 선택하고 활하중 분배계수식을 개발하였다.

  • PDF

Girder distribution factors for steel bridges subjected to permit truck or super load

  • Tabsh, Sami W.;Mitchell, Muna M.
    • Structural Engineering and Mechanics
    • /
    • 제60권2호
    • /
    • pp.237-249
    • /
    • 2016
  • There are constraints on truck weight, axle configurations and size imposed by departments of transportation around the globe due to structural capacity limitations of highway pavements and bridges. In spite of that, freight movers demand some vehicles that surpass the maximum size and legal weight limits to use the transportation network. Oversized trucks serve the purpose of spreading the load on the bridge; thus, reducing the load effect on the superstructure. For such vehicles, often a quick structural analysis of the existing bridges along the traveled route is needed to ensure that the structural capacity is not exceeded. For a wide vehicle having wheel gage larger than the standard 1830 mm, the girder distribution factors in the design specifications cannot be directly used to estimate the live load in the supporting girders. In this study, a simple approach that is based on finite element analysis is developed by modifying the AASHTO LRFD's girder distribution factors for slab-on-steel-girder bridges to overcome this problem. The proposed factors allow for determining the oversized vehicle bending moment and shear force effect in the individual girders as a function of the gage width characteristics. Findings of the study showed that the relationship between the girder distribution factor and gage width is more nonlinear in shear than in flexure. The proposed factors yield reasonable results compared with the finite element analysis with adequate level of conservatism.

Wind tunnel tests on wind loads acting on steel tubular transmission towers under skewed wind

  • YANG, Fengli;NIU, Huawei
    • Wind and Structures
    • /
    • 제35권2호
    • /
    • pp.93-108
    • /
    • 2022
  • Steel tubular towers are commonly used in UHV and long crossing transmission lines. By considering effects of the model scale, the solidity ratio and the ratio of the mean width to the mean height, wind tunnel tests under different wind speeds on twenty tubular steel tower body models and twenty-six tubular steel cross-arm models were completed. Drag coefficients and shielding factors of the experimental tower body models and cross-arm models in wind directional axis for typical skewed angles were obtained. The influence of the lift forces on the skewed wind load factors of tubular steel tower bodies was evaluated. The skewed wind load factors, the wind load distribution factors in transversal and longitudinal direction were calculated for the tubular tower body models and cross-arm models, respectively. Fitting expressions for the skewed wind load factors of tubular steel bodies and cross-arms were determined through nonlinear fitting analysis. Parameters for skewed wind loads determined by wind tunnel tests were compared with the regulations in applicable standards. Suggestions on the drag coefficients, the skewed wind load factors and the wind load distribution factors were proposed for tubular steel transmission towers.

터널 설계조건을 고려한 하중분배율의 정량적 산정에 관한 연구 -ring-cut 굴착공법을 중심으로- (A Study on the Quantitative Evaluation of the Load Distribution Factors Considering the Design Conditions of Tunnel Especially for the Ring-cut Excavation Method)

  • 장석부;문현구
    • 한국지반공학회지:지반
    • /
    • 제14권5호
    • /
    • pp.5-16
    • /
    • 1998
  • 공사중 터널은 막장부의 종방향 및 횡방향 아치거동에 의하여 주변 지반은 3차원적 변형거동을 보이나, 터널 안정성 해석에는 전산효율 등의 이유로 2차원 수치해석법이 일반적으로 적용되고 있다. 하중분배율은 터널의 굴진효과를 고려하기 위하여 2차원 해석에 도입된 것으로 지반변위, 숏크 리트 및 록볼트와 같은 1차 지보재의 하중 등과 같은 해석결과에 큰 영향을 미친다. 또한, 3차원 해석을 이용한 기존의 연구에 의하면, 지반의 변형특성, 터널크기, 굴진장 등이 하중분배율에 주요한 영향을 미친다는 사실이 입증되었다. 그러나, 설계조건에 대한 하중분배율의 정량적 산정법의 부재 로 인하여 실제 해석시에는 설계조건을 무시한 하중분배율이 적용되고 있는 실정이다. 이에, 본 논문에서는 기존 연구(정 대열, 1993)에서 제시한 72개의 3차원 해석결과에 대한 회귀분석을 통하여 하중분배율을 정량적으로 산정할 수 있는 방법을 제시하였다. 또한. ring-cut공법은 막장의 자립성 이 매우 불량한 조건에 적용되는 공법임에도 불구하고 기존의 2차원 해석 법으로는 막장코아의 진 지효과를 고려하지 못하는 문제점이 있었다. 따라서, 2차원 및 3차원 수치해석을 통하여 ring-cut공 법에 대한 기존 해석법의 문제점을 검토하였으며 본 공법에 대한 하중분배율의 보정치를 제시하였 다.

  • PDF

강상자형 사교의 윤하중분배계수 (A Study on Wheel Load Distribution Factors of Skew Steel Box Girder Bridges)

  • 서창범;송재호;김일수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권4호통권56호
    • /
    • pp.148-158
    • /
    • 2009
  • 본 연구에서는 강상자형 사교의 윤하중분배계수에 관련된 외국 설계규준들(AASHTO, AASHTO LRFD)의 문제점을 파악하고, 윤하중분배계수에 영향을 미치는 주요변수에 대한 평가를 수행하였다. 또한 다양한 강상자형 사교의 모델에 대한 유한요소해석을 수행하였으며, 그 결과를 바탕으로 회귀분석을 이용하여 강상자형사교의 윤하중분배계수를 산정하는 식을 제안하였다. 본 연구 제안식의 적용 시 기존 설계 규준식의 문제점을 보완할 수 있고, 강상자형사교의 설계시 구조해석에 소요되는 시간을 절약할 수 있어, 그 타당성 및 실용성을 확인할 수 있었다.

동력용 배전 변압기의 최대부하 예측 개선 방안에 관한 연구 (A Study on the Peak Load Prediction for Molter-use Distribution Transformer)

  • 박경호;김재철;윤상윤;이영석;박창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.530-532
    • /
    • 2002
  • The contracted electric power and the demand factor of customers are used to predict the peak load in distribution transformers. The conventional demand factor was determined more than ten years ago. The contracted electric power and power demand have been increased. Therefore, we need to prepare the novel demand factor that appropriates at present. In this paper, we modify the demand factor to improve the peak load prediction of distribution transformers. To modify the demand factor, we utilize the 169 data acquisition devices for sample distribution transformers. The peak load currents were measured by the case studies using the actual load data, through which we verified that the proposed demand factors were correct than the conventional factors. A newly demand factor will be used to predict the peak load of distribution transformers.

  • PDF