• Title/Summary/Keyword: load distribution factor

Search Result 409, Processing Time 0.035 seconds

A Study on the Load Distribution Factor in the Perforated Square Plate with Elastic Support at Four Corners (彈性支持를 받는 四角多孔板의 荷重分布係數에 관한 연구)

  • 임정식;이영신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.563-571
    • /
    • 1989
  • The load distribution factor in the perforated square plate under concentrated load acting at arbitrary points through elastic media are calculated. For the calculation the perforated plate was converted into an orthotropic plate using the method suggested by J.B. Mahoney. In the process of the calculation the angle support at each corners was equivalent to a point support having equivalent stiffness. The deflections for the calculation of the load distribution factor were obtained using auxiliary plate extended in both directions of the plate and compared with the results from ANSYS calculations. After showing the validity of the current method, the calculation of the load distribution factor was performed. The result showed that the load distribution factor at the periphery of the plate is larger than that of in the central locations. This load distribution factor could be used for re-distribution of the applied load in more accurate analysis of the plate as well as it can be used in the analysis of the elastic media as the load factor.

A Study on the Application of Load Distribution Factor through the Three-Dimensional Numerical Analysis in Tunnel (터널의 3차원 수치해석에서 하중분배율 적용에 관한 연구)

  • Yoon, Won-Sub;Cho, Chul-Hyun;Park, Sang-Jun;Kim, Jong-Kook;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.784-791
    • /
    • 2008
  • In this study, we recognized about application of the load distribution factor for design of tunnel in 3D numerical analysis. Generally, load distribution factor of tunnel is applied to describe 3D arching effect that can not describe when 2D numerical analysis. Through result of 3D numerical analysis, we used to apply in numerical analysis for the load distribution factor that ratio of finally displacement to displacement of construction step. But 3D numerical analysis need to apply to load distribution factor for convenience of numerical analysis. Therefore, we proposed load distribution factor that reduce time and coast. It corrected variable of advanced length in load distribution factor of 3D numerical analysis.

  • PDF

Improvement Method of Peak Load Forecasting for Mortor-use Distribution Transformer by Readjustment of Demand Factor (호당 수용률 조정을 통한 동력용 배전 변압기 최대부하 예측 개선 방안)

  • Park, Kyung-Ho;Kim, Jae-Chul;Lee, Hee-Tea;Yun, Sang-Yun;Park, Chang-Ho;Lee, Young-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.41-43
    • /
    • 2002
  • The contracted electric power and the demand factor of customers are used to predict the peak load in distribution transformers. The conventional demand factor was determined more than ten years ago. The contracted electric power and power demand have been increased. Therefore, we need to prepare the novel demand factor that appropriates at present. In this paper, we modify the demand factor to improve the peak load prediction of distribution transformers. To modify the demand factor, we utilize the 169 data acquisition devices for sample distribution transformers in winter, spring summer. And, the peak load currents were measured by the case studies using the actual load data, through which we verified that the proposed demand factors were correct than the conventional factors. A newly demand factor will be used to predict the peak load of distribution transformers.

  • PDF

A Study on the Peak Load Prediction for Molter-use Distribution Transformer (동력용 배전 변압기의 최대부하 예측 개선 방안에 관한 연구)

  • Park, Kyung-Ho;Kim, Jae-Chul;Yun, Sang-Yun;Lee, Young-Suk;Park, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.530-532
    • /
    • 2002
  • The contracted electric power and the demand factor of customers are used to predict the peak load in distribution transformers. The conventional demand factor was determined more than ten years ago. The contracted electric power and power demand have been increased. Therefore, we need to prepare the novel demand factor that appropriates at present. In this paper, we modify the demand factor to improve the peak load prediction of distribution transformers. To modify the demand factor, we utilize the 169 data acquisition devices for sample distribution transformers. The peak load currents were measured by the case studies using the actual load data, through which we verified that the proposed demand factors were correct than the conventional factors. A newly demand factor will be used to predict the peak load of distribution transformers.

  • PDF

Wheel Load Distribution Factor for Girder Moment and Shear Force of Skew Plate Girder Bridges (판형사교 거더의 휨모멘트와 전단력에 대한 하중분배계수)

  • Seo, Chang-Bum;Song, Jae-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.33-43
    • /
    • 2005
  • The girder wheel load distribution factors stated in the Korean Bridge Specification and AASHTO Standard Specifications do not account for the effect of skewness of plate girders, and very little research has been conducted on girder wheel load distribution factors. The purpose of the study is to propose load distribution factor formulas for skew plate girder bridges which comprise various parameters through structural analysis. To confirm the validity of finite element models used in this study analytic values are compared with the field test results. From the results it should be noted that span length is not such a dominant parameter compared with others. In view of better load distribution of interior girders, skew arranged cross beams or bracing are preferable, furthemore bracing system is more effective than cross beam system. By means of regression analysis on the basis of analytic results wheel load distribution factor formulas are proposed and compared with current codes.

Girder Wheel Load Distribution Factor of Skew Plate Girder Bridges (강판형 사교의 거더분배계수에 관한 연구)

  • Seo, Chang-Bum;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.293-303
    • /
    • 2005
  • The girder wheel load distribution factors stated in the Korean Bridge Specification and AASHTO Standard Specifications do not account for the effect of skewness of plate girders, and very little research has been conducted on girder wheel load distribution factors. The purpose of the study is to propose load distribution factor formulas for skew plate girder bridges which comprise various parameters through structural analysis. To comprise the validity of finite element models used in this study analytic values are compared with the field test results. From the results it should be noted that span length is not such a dominant parameter compared with others. In view of better load distribution of interior girders, skew arranged cross beams or bracing are preferable, furthemore bracing system is more effective than cross beam system. By means of regression analysis on the basis of analytic results wheel load distribution factor formulas are proposed and compared with current codes.

Optimal Calculation Method of Distribution Loss in Distribution Systems

  • Rho Dae-Seok
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.109-115
    • /
    • 2005
  • Recently, the needs and concerns regarding power loss have been increasing according to energy conservation at the level of the national policies and the business strategies of power utilities. In particular, the issue of power loss is the main factor for determining rates for electrical consumption in the deregulation of the electrical industry. However, because of the lack of management for power loss load factors (LLF) it is difficult to make a calculation for power loss and to make a decision concerning the electric rates. Furthermore, loss factor (k-factor) in Korea, which is of primary significance in the calculation of distribution power loss, has been used as a fixed value of 0.32 since the fiscal year 1973. Therefore, this study presents the statistical calculation methods of the loss factors classified by load types and seasons by using the practical data of 65 primary feeders that have been selected by appropriate procedures. Based on the above, the algorithms and methods, as well as the optimal method of the distribution loss management classified by facilities such as primary feeders, distribution transformers and secondary feeders is presented. The simulation results demonstrate the effectiveness and usefulness of the proposed methods.

Estimation of Load Characteristic Factor Considering The Load Pattern and Seasonal Characteristic for Consumer (수용가의 형태와 계절별 특성을 고려한 부하특성계수 재 산정)

  • Hwang, H.M.;Jang, S.I.;Kim, K.H.;Kim, J.E.;Rho, D.S.;Jeong, I.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.450-453
    • /
    • 2003
  • This paper presents the estimation on Load Characteristic Factor(k) which is considered to load pattern and seasonal characteristic of consumer. We can calculate the loss of distribution networks through the equation composing of Load Factor(LF), Loss Load Factor(LLF) and load characteristic factor(k). This equation is similar to the method of Regulator-General Victoria, Australia. Generally, the conventional method for calculating the distribution losses uses k with a constant value from 0.1 to 0.3. However, the k which is a relationship between LF and LLF can be varied by load pattern and seasonal characteristics. It is necessary to estimate the k according to load characteristics. This paper shows the result for recalculating k using the KEPCO's SOMAS data measured in distribution networks.

  • PDF

A New Analysis for Load Unbalance Factor (부하 불평형율에 대한 새로운 해석)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.67-72
    • /
    • 2006
  • Most of the load distributions in low voltage power feeder distribution systems are designed with approximately balanced and connected at the three phase four wire systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating load unbalance. Load unbalance factor is mainly affected by the impedance of load system. Unbalanced current will draw a highly unbalanced voltage. This paper presents a new calculation method for unbalance factor under the load variation at the three phase four wire system. Load unbalance factor is measured by the power quality measurement apparatus and compared with the current unbalance factor. Two methods are indicated similar results.

A Study on Load Distribution Factor Considering Plasticity of Ground (지반의 소성을 고려한 하중분담율 연구)

  • Kim Dong Wook;Jung Sang Kug;Yu Oh Shick;Lee Song
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.411-416
    • /
    • 2003
  • On the tunnel design, 3D model substituted for 2D model because of economic reason and time shortage. It is applied Load Distribution Factor, which is compared of displacement of tunnel crown, generally 50-25-25, 40-30-30 are used for tunnel design. Logicality about used Load Distribution Factor will investigated

  • PDF