• Title/Summary/Keyword: load data

Search Result 5,234, Processing Time 0.041 seconds

A Study on the Sensitivity Analysis of Ship Mooring Evaluation Factors According to Sea Level Rise in Mokpo Port (목포항 해수면 상승에 따른 선박 계류평가요소의 민감도 분석 연구)

  • Seungyeon Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.445-455
    • /
    • 2023
  • Sea level rise due to global warming is accelerating. According to the IPCC survey, the expected sea level rise in 2100 was analyzed to be 47cm in the low-carbon scenario (SSP 1-2.6) and 82cm in the high-carbon scenario (SSP 5-8.5). Sea level rise can cause serious damage to port infrastructure and reduce the safety of ships docked inside ports. In this study, Mokpo Port, which frequently suffers from flooding during high tide, was selected and the sensitivity of mooring evaluation factors was analyzed for actual berthing ships according to sea level rise scenarios. From the analysis, we found that the tension of mooring line, the load of bollard, vertical angle of mooring line, and ship's motion of 6-DOF, which are evaluation factors, generally increased when the sea level increased. The most sensitive evaluation factor was sway motion of 6-DOF. Also, we analyzed that the value of mooring evaluation factors decreased when the crown height was raised. This was beneficial in improving ship and pier safety. The results of this study can be used as basic data to secure measures to improve port and ship safety according to sea level rise in Mokpo Port.

Development of Detailed Design Automation Technology for AI-based Exterior Wall Panels and its Backframes

  • Kim, HaYoung;Yi, June-Seong
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1249-1249
    • /
    • 2022
  • The facade, an exterior material of a building, is one of the crucial factors that determine its morphological identity and its functional levels, such as energy performance, earthquake and fire resistance. However, regardless of the type of exterior materials, huge property and human casualties are continuing due to frequent exterior materials dropout accidents. The quality of the building envelope depends on the detailed design and is closely related to the back frames that support the exterior material. Detailed design means the creation of a shop drawing, which is the stage of developing the basic design to a level where construction is possible by specifying the exact necessary details. However, due to chronic problems in the construction industry, such as reducing working hours and the lack of design personnel, detailed design is not being appropriately implemented. Considering these characteristics, it is necessary to develop the detailed design process of exterior materials and works based on the domain-expert knowledge of the construction industry using artificial intelligence (AI). Therefore, this study aims to establish a detailed design automation algorithm for AI-based condition-responsive exterior wall panels and their back frames. The scope of the study is limited to "detailed design" performed based on the working drawings during the exterior work process and "stone panels" among exterior materials. First, working-level data on stone works is collected to analyze the existing detailed design process. After that, design parameters are derived by analyzing factors that affect the design of the building's exterior wall and back frames, such as structure, floor height, wind load, lift limit, and transportation elements. The relational expression between the derived parameters is derived, and it is algorithmized to implement a rule-based AI design. These algorithms can be applied to detailed designs based on 3D BIM to automatically calculate quantity and unit price. The next goal is to derive the iterative elements that occur in the process and implement a robotic process automation (RPA)-based system to link the entire "Detailed design-Quality calculation-Order process." This study is significant because it expands the design automation research, which has been rather limited to basic and implemented design, to the detailed design area at the beginning of the construction execution and increases the productivity by using AI. In addition, it can help fundamentally improve the working environment of the construction industry through the development of direct and applicable technologies to practice.

  • PDF

A Case Study on the Hybrid Reinforcement Retaining Wall System Reinforced by Soil Nail and Steel Strip (쏘일네일과 강재스트립으로 보강된 복합보강토옹벽 시스템의 사례연구)

  • Chun, Byung-Sik;Kim, Hong-Taek;Cho, Hyun-Soo;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.5-12
    • /
    • 2008
  • The reinforced earth wall, which is able to improve the strength of soil highly, is required in case of supporting high surcharge load such as high speed rail way, high embankment road, and massive reinforced earth wall in a mountainous area. And also, it is continuously required that the method is able to minimize the amount of excavated soil on account of environmental issue, boundary of land, etc., on excavation site. However, because the required length of reinforcement should be $60{\sim}80%$ of the height of reinforced earth wall for general reinforced earth wall, in fact the reinforced earth wall is hardly applied on the site of cut slope. In this paper we studied the design and construction cases of hybrid reinforcement retaining wall system combined with steel strips and soil nails, connecting the reinforced earth wall reinforcements to the slope stability reinforcements (soil nails) to ensure sufficient resistance by means of reducing the length of reinforcements of reinforced earth wall. And the feasibility of hybrid reinforcement retaining wall system, suggested by real data measured on site, is also discussed.

Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites (섬유배향과 섬유함유량이 섬유강화 열가소성수지 복합재료의 인장강도에 미치는 영향)

  • Kim, Jin-Woo;Lee, Dong-Gi
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.13-19
    • /
    • 2007
  • Fiber-reinforced thermoplastic composites not only approach almost near to the strength of thermosetting composite but also has excellent productivity, recycling property, and impact resistance, which are pointed as weaknesses of thermosetting composites. The study for strength calculation of one direction fiber-reinforced thermoplastic composites and the study measuring precisely fiber orientation distribution were presented. Need the systematic study for the data base that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed. Therefore, this study was investigated what affect the fiber content ratio and fiber orientation distribution have on the strength of composites. Fiber-reinforced thermoplastic composites by changing fiber orientation distribution and the fiber content ratio were made. Tensile strength ratio of $0^{\circ}$ direction of fiber-reinforced composites increased being proportional the fiber content and fiber orientation function as change from isotropy(J=0) to anisotropy(J=1). But, tensile strength ratio of $90^{\circ}$ direction by separation of fiber filament decreased when tensile load is imposed fur width direction of reinforcement fiber length direction.

Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip

  • Li Zhu;Ray Kai-Leung Su;Wei Liu;Tian-Nan Han;Chao Chen
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.207-233
    • /
    • 2023
  • Steel-concrete composite box girder bridges are widely used in the construction of highway and railway bridges both domestically and abroad due to their advantages of being light weight and having a large spanning ability and very large torsional rigidity. Composite box girder bridges exhibit the effects of shear lag, restrained torsion, distortion and interface bidirectional slip under various loads during operation. As one of the most commonly used calculation tools in bridge engineering analysis, one-dimensional models offer the advantages of high calculation efficiency and strong stability. Currently, research on the one-dimensional model of composite beams mainly focuses on simulating interface longitudinal slip and the shear lag effect. There are relatively few studies on the one-dimensional model which can consider the effects of restrained torsion, distortion and interface transverse slip. Additionally, there are few studies on vehicle-bridge integrated systems where a one-dimensional model is used as a tool that only considers the calculations of natural frequency, mode and moving load conditions to study the dynamic response of composite beams. Some scholars have established a dynamic analysis model of a coupled composite beam bridge-train system, but where the composite beam is only simulated using a Euler beam or Timoshenko beam. As a result, it is impossible to comprehensively consider multiple complex force effects, such as shear lag, restrained torsion, distortion and interface bidirectional slip of composite beams. In this paper, a 27 DOF vehicle rigid body model is used to simulate train operation. A two-node 26 DOF finite beam element with composed box beams considering the effects of shear lag, restrained torsion, distortion and interface bidirectional slip is proposed. The dynamic analysis model of the coupled composite box girder bridge-train system is constructed based on the wheel-rail contact relationship of vertical close-fitting and lateral linear creeping slip. Furthermore, the accuracy of the dynamic analysis model is verified via the measured dynamic response data of a practical composite box girder bridge. Finally, the dynamic analysis model is applied in order to study the influence of various mechanical effects on the dynamic performance of the vehicle-bridge system.

Analysis of Hydraulic behavior in Unsaturated Soil Slope for the Boundary Condition and Hysteresis of SWCC (경계 조건과 불포화 함수 특성 곡선의 이력에 따른 불포화 토사 사면의 수리적 거동 분석)

  • Lee, Eo-Ryeong;Park, Hyun-Su;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • Recent weather changes have led to an increase in heavy rainfall resulting in frequent large-scale slope failures. To minimize damage to life and property, a measurement system is used in slope failure warning systems. However, understanding the slope failure behavior is difficult as the measurement system only measures a specific point. Therefore, numerical analysis must be p erformed with the measurement system. The soil water characteristic curve (SWCC) drying curve and boundary conditions that consider evapotranspiration and precipitation have been applied to numerical analysis, but the hysteresis of SWCC affects the numerical analysis results. To address this, a new evapotranspiration calculation method is proposed and applied to boundary conditions, and the measurement data are compared with the results of the numerical analysis. This method takes into account the different infiltration behaviors on evapotranspiration according to the drying and wetting curves of the SWCC, and allows for a more rational prediction of water movement on unsaturated slopes.

A Temperature Predicting Method for Thermal Behaviour Analysis of Curved Steel Box Girder Bridges (곡선 강박스거더교의 온도거동 분석을 위한 온도분포 예측기법에 관한 연구)

  • Cho, Kwang-Il;Won, Jeong-Hun;Kim, Sang-Hyo;Lu, Yung-Chien
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.105-113
    • /
    • 2008
  • Solar radiation induces non-uniform temperature distribution in the bridge structure depending on the shape of the structure and shadows cast on it. Especially in the case of curved steel box girder bridges, non-uniform temperature distribution caused by solar radiation may lead to unusual load effects enough to damage the support or even topple the whole curved bridge structure if not designed properly. At present, it is very difficult to design bridges in relation to solar radiation because it is not known exactly how varying temperature distribution affects bridges; at least not specific enough for adoption in design. Standard regulations related to this matter are likewise not complete. In this study, the thermal behavior of curved steel box girder bridges is analyzed while taking the solar radiation effect into consideration. For the analysis, a method of predicting the 3-dimensional temperature distribution of curved bridges was developed. It uses a theoretical solar radiation energy equation together with a commercial FEM program. The behavior of the curved steel box girder bridges was examined using the developed method, while taking into consideration the diverse range of bridge azimuth angles and radii. This study also provides reference data for the thermal design of curved steel box girder bridges under solar radiation, which can be used to develop design guidelines.

Research on soil composition measurement sensor configuration and UI implementation (토양 성분 측정 센서 구성 및 UI 구현에 관한 연구)

  • Ye Eun Park;Jin Hyoung Jeong;Jae Hyun Jo;Young Yoon Chang;Sang Sik Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.76-81
    • /
    • 2024
  • Recently, agricultural methods are changing from experience-based agriculture to data-based agriculture. Changes in agricultural production due to the 4th Industrial Revolution are largely occurring in three areas: smart sensing and monitoring, smart analysis and planning, and smart control. In order to realize open-field smart agriculture, information on the physical and chemical properties of soil is essential. Conventional physicochemical measurements are conducted in a laboratory after collecting samples, which consumes a lot of cost, labor, and time, so they are quickly measured in the field. Measurement technology that can do this is urgently needed. In addition, a soil analysis system that can be carried and moved by the measurer and used in Korea's rice fields, fields, and facility houses is needed. To solve this problem, our goal is to develop and commercialize software that can collect soil samples and analyze the information. In this study, basic soil composition measurement was conducted using soil composition measurement sensors consisting of hardness measurement and electrode sensors. Through future research, we plan to develop a system that applies soil sampling using a CCD camera, ultrasonic sensor, and sampler. Therefore, we implemented a sensor and soil analysis UI that can measure and analyze the soil condition in real time, such as hardness measurement display using a load cell and moisture, PH, and EC measurement display using conductivity.

Optimal Sensor Placement for Improved Prediction Accuracy of Structural Responses in Model Test of Multi-Linked Floating Offshore Systems Using Genetic Algorithms (다중연결 해양부유체의 모형시험 구조응답 예측정확도 향상을 위한 유전알고리즘을 이용한 센서배치 최적화)

  • Kichan Sim;Kangsu Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • Structural health monitoring for ships and offshore structures is important in various aspects. Ships and offshore structures are continuously exposed to various environmental conditions, such as waves, wind, and currents. In the event of an accident, immense economic losses, environmental pollution, and safety problems can occur, so it is necessary to detect structural damage or defects early. In this study, structural response data of multi-linked floating offshore structures under various wave load conditions was calculated by performing fluid-structure coupled analysis. Furthermore, the order reduction method with distortion base mode was applied to the structures for predicting the structural response by using the results of numerical analysis. The distortion base mode order reduction method can predict the structural response of a desired area with high accuracy, but prediction performance is affected by sensor arrangement. Optimization based on a genetic algorithm was performed to search for optimal sensor arrangement and improve the prediction performance of the distortion base mode-based reduced-order model. Consequently, a sensor arrangement that predicted the structural response with an error of about 84.0% less than the initial sensor arrangement was derived based on the root mean squared error, which is a prediction performance evaluation index. The computational cost was reduced by about 8 times compared to evaluating the prediction performance of reduced-order models for a total of 43,758 sensor arrangement combinations. and the expected performance was overturned to approximately 84.0% based on sensor placement, including the largest square root error.

Enhancing Throughput and Reducing Network Load in Central Bank Digital Currency Systems using Reinforcement Learning (강화학습 기반의 CBDC 처리량 및 네트워크 부하 문제 해결 기술)

  • Yeon Joo Lee;Hobin Jang;Sujung Jo;GyeHyun Jang;Geontae Noh;Ik Rae Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.129-141
    • /
    • 2024
  • Amidst the acceleration of digital transformation across various sectors, the financial market is increasingly focusing on the development of digital and electronic payment methods, including currency. Among these, Central Bank Digital Currencies (CBDC) are emerging as future digital currencies that could replace physical cash. They are stable, not subject to value fluctuation, and can be exchanged one-to-one with existing physical currencies. Recently, both domestic and international efforts are underway in researching and developing CBDCs. However, current CBDC systems face scalability issues such as delays in processing large transactions, response times, and network congestion. To build a universal CBDC system, it is crucial to resolve these scalability issues, including the low throughput and network overload problems inherent in existing blockchain technologies. Therefore, this study proposes a solution based on reinforcement learning for handling large-scale data in a CBDC environment, aiming to improve throughput and reduce network congestion. The proposed technology can increase throughput by more than 64 times and reduce network congestion by over 20% compared to existing systems.