• Title/Summary/Keyword: load contour

Search Result 65, Processing Time 0.054 seconds

Nonlinear Analysis of High Strength RC Columns Subjected to Axial Load and Biaxial Bending (2축 편심 축력을 받는 고강도 RC 기둥의 비선형해석)

  • 신성우;반병열;유석형;조문희;한경돈;이종원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.41-46
    • /
    • 2001
  • The main objective of this study is to provide data on high strength concrete columns subjected to axial load and biaxial bending. For the design of biaxial bending, the approximate method (Bresler load contour method, PCA load contour method) is presented in ACI code. The present study investigate whether the methods are valid in high strength concrete and compare analysis results(by FEM method) with experimental results. Also, this study examines whether statics method and failure surface equation(by Hsu) are adequate.

  • PDF

A Contour Line Approach to Storage Location Configurations for Dual Command Operations (등고선 접근방식을 이용한 복식명령작업 저장위치형태의 결정)

  • Park, Byung-Chun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.519-528
    • /
    • 1998
  • This paper examines the effect of storage location configurations on dual command cycle times for the efficient operation of automated storage/retrieval systems. We use a contour line approach to determine storage location configurations. We present a contour line configuration generating scheme and a location indexing scheme. Given a contour line configuration, the location indexing scheme provides a unique priority to each location. The location priority is then used for determining the storage location of an incoming load. To investigate the effect of alternative contour line configurations on dual command cycle times, we perform a series of experiments under various storage policies.

  • PDF

An Experimental Study in Rectangular High Strength Concrete Columns under Both Axial Load and Biaxial Bending (2축 편심 축하중을 받는 직사각형 고강도 RC기둥의 거동에 대한 실험적연구)

  • 이종원;조문희;한경돈;유석형;반병열;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.209-214
    • /
    • 2001
  • Most reinforce concrete Columns of Building structure are subjected to both axial load and biaxial bending. However, It is hard to estimate the moment capacity of biaxial bending by exact solution. Thus, columns under biaxial bending are designed by approximate methods in practice. The purpose of this study is to compare experimental result with approximate methods and exact solution by computer. Parameters of the present test are compressive strength of concrete (350, 585, 650kgf/$\textrm{cm}^2$) and shape ratio of rectangular section. Ultimately, an experimental shape factor for rectangular RC column section is obtained through the test program. The shape of load contour is dominated by this shape factor obtained experimentally. So, reasonable design of RC columns subjected to both axial compression and biaxial bending depends on load contour.

  • PDF

외란 관특자를 이용한 2 축 동시 가공시의 절삭력 간접 측정

  • 우중원;김태용;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.276-280
    • /
    • 1996
  • This paper presents an indirect method for on-line measuring the cutting forces in contour NC milling processes by using the current signals of the servo drive motors. A Kaluman filler is used for estimating each of the load torques to the x, y-axis servo motors of a horizontal machining center. Then, the load torque induced by the friction force in the guidewayis estimated and subtracted from the total extermal torque, thus resulting in the load torque induced by the cutting force. A series of experimental works on the circular interpolated contour milling process shows good agrement between the cutting forces measured by the dynamometer and those estimated by the method presented in the paper.

  • PDF

An Evaluation of Influencing Parameters on Biaxial Bending Moment Strength of Reinforced Concrete Columns (철근 콘크리트 기둥의 2축휨 강도에 영향을 미치는 변수 고찰)

  • Yoo, Suk-Hyung;Bahn, Byong-Youl;Shin, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.239-246
    • /
    • 2003
  • In the PCA Load Contour Method, the biaxial bending design coefficient of columns(${\beta}$) is based on the equivalent rectangular stress block (RSB). And coefficient of ${\beta}$ estimates the reinforcement index to be a influencing parameter on biaxial moment strength of RC columns without considering the arbitrary condition of bar arrangement. The experimental results of high strength concrete (HSC) columns subjected to combined axial load and biaxial bending moment were compared to the analysis results of RSB method. As result, the accuracy of RSB method is still acceptable for HSC columns and, as the reinforcement is placed densely in each corner of column section, the ${\beta}$ is decreased.

Determination of equivalent blasting load considering millisecond delay effect

  • Song, Zhan-Ping;Li, Shi-Hao;Wang, Jun-Bao;Sun, Zhi-Yuan;Liu, Jing;Chang, Yu-Zhen
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.745-754
    • /
    • 2018
  • In the analysis of the effects of rock tunnel blasting vibration on adjacent existing buildings, the model of simplified equivalent load produces higher calculation result of vibration, due to the lack of consideration of the millisecond delay effect. This paper, based on the static force equivalence principle of blasting load, proposes a new determination method of equivalent load of blasting vibration. The proposed method, based on the elastic-static force equivalence principle of stress wave, equals the blasting loads of several single blastholes in the same section of millisecond blasting to the triangle blasting load curve of the exploded equivalent elastic boundary surface. According to the attenuation law of stress wave, the attenuated equivalent triangle blasting load curve of the equivalent elastic boundary is applied on the tunnel excavation contour surface, obtaining the final applied equivalent load. Taking the millisecond delay time of different sections into account, the time-history curve of equivalent load of the whole section applied on the tunnel excavation contour surface can be obtained. Based on Sailing Tunnel with small spacing on Sanmenxia-Xichuan Expressway, an analysis on the blasting vibration response of the later and early stages of the tunnel construction is carried out through numerical simulation using the proposed equivalent load model considering millisecond delay effect and the simplified equivalent triangle load curve model respectively. The analysis of the numerical results comparing with the field monitoring ones shows that the calculation results obtained from the proposed equivalent load model are closer to the measured ones and more feasible.

Biaxial Interaction and Load Contour Method for Reinforced Concrete C- and H-shaped Structural Walls (C형 및 H형 철근콘크리트 구조벽체의 2축 상호작용과 등하중법)

  • Nam, Hye-Sung;Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.189-200
    • /
    • 2017
  • Nonplanar structural walls with C-shaped and H-shaped sections have been used as an efficient lateral force-resisting system for building structures. Since the nonplanar walls are subjected to axial load and bending moments about two orthogonal axes, complicated section analysis is required for flexure-compression design. In the present study, a straightforward design method for biaxially loaded C- and H-shaped walls was proposed by modifying the existing load contour method for columns with symmetric solid sections. For this, a strain compatibility section analysis program that can calculate biaxial moment strengths of arbitrary wall section was developed and its validity was verified by comparing with existing test results. Then, through parametric study, the interaction of biaxial moments at constant axial loads in prototype C- and H-shaped walls was investigated. The results showed that, due to unsymmetrical geometry of the wall sections, the biaxial interaction was significantly affected by the moment directions and axial loads. From those investigations, non-dimensional contour equations of the biaxial moments at constant axial loads for C- and H-shaped walls were suggested. Further, design examples using the proposed contour equations were given for engineering practice.

Study on the negative resistance of the FET with series reactive feedback (직렬궤환을 이용한 FET의 부성저항에 관한 연구)

  • Eom, Gyeong-Hwan;Na, Jeong-Ung
    • Proceedings of the KIEE Conference
    • /
    • 1985.07a
    • /
    • pp.341-343
    • /
    • 1985
  • In designing the high frequency oscillator with FET, it may be necessary to make the FFT unstable using feedback. For convenient realization, sir feedback type is usually employed. It is convenient to determine the load which makes oscillation possible, with the contour plot of the negative resistance of the FET positively feedback for each type. Analytic formulas are given for this contour plot in this paper, and the results are discussed.

  • PDF

Real-Time Object Tracking Algorithm based on Minimal Contour in Surveillance Networks (서베일런스 네트워크에서 최소 윤곽을 기초로 하는 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.337-343
    • /
    • 2014
  • This paper proposes a minimal contour tracking algorithm that reduces transmission of data for tracking mobile objects in surveillance networks in terms of detection and communication load. This algorithm perform detection for object tracking and when it transmit image data to server from camera, it minimized communication load by reducing quantity of transmission data. This algorithm use minimal tracking area based on the kinematics of the object. The modeling of object's kinematics allows for pruning out part of the tracking area that cannot be mechanically visited by the mobile object within scheduled time. In applications to detect an object in real time,when transmitting a large amount of image data it is possible to reduce the transmission load.

Design of Cam Contour for Constant Hangers (등하중지지대의 캠 윤곽 설계)

  • Lee, Gun-Myung;Park, Mun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.669-675
    • /
    • 2011
  • A constant hanger is a device for supporting pipes in plants. It supplies a constant force to a supporting pipe even if the pipe moves because of thermal expansion. In this paper, we propose a method for designing the contour of a cam for a constant hanger. It has been shown that the contour of a cam must satisfy the geometrical relation of the cam, the force balance equation for the load tube, the relation between the side spring compression and the cam rotation angle, and the moment balance equation for the cam. A calculation procedure to solve these equations simultaneously is proposed, and a constant hanger is designed successfully.