• Title/Summary/Keyword: load bearing systems

Search Result 175, Processing Time 0.037 seconds

A LSTM-based method for intelligent prediction on mechanical response of precast nodular piles

  • Chen, Xiao-Xiao;Zhan, Chang-Sheng;Lu, Sheng-Liang
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.209-219
    • /
    • 2022
  • The determination for bearing capacity of precast nodular piles is conventionally time-consuming and high-cost by using numerous experiments and empirical methods. This study proposes an intelligent method to evaluate the bearing capacity and shaft resistance of the nodular piles with high efficiency based on long short-term memory (LSTM) approach. A series of field tests are first designed to measure the axial force, shaft resistance and displacement of the combined nodular piles under different loadings, in comparison with the single pre-stressed high-strength concrete piles. The test results confirm that the combined nodular piles could provide larger ultimate bearing capacity (more than 100%) than the single pre-stressed high-strength concrete piles. Both the LSTM-based method and empirical methods are used to calculate the shift resistance of the combined nodular piles. The results show that the LSTM-based method has a high-precision estimation on shaft resistance, not only for the ultimate load but also for the working load.

Analysis of Three-Pad Gas Foil Journal Bearing for Increasing Mechanical Preloads (3 패드 가스 포일 저널 베어링의 프리로드 증가에 따른 성능 해석)

  • Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, a three-pad gas foil journal bearing with a diameter of 40 mm and an axial length of 35 mm was modeled to predict the static and dynamic performances with regard to an increasing mechanical preload. The Reynolds equation for an isothermal and isoviscous ideal gas was coupled with a simple elastic foundation foil model to calculate the hydrodynamic pressure solution iteratively. In the prediction results, the journal eccentricity, journal attitude angle, and minimum film thickness decreased, but the friction torque increased with the preload. A quick comparison implied a lower load capacity but higher stability for a three-pad gas foil bearing compared to a one-pad gas foil journal bearing. The direct stiffness coefficients increased with the preload, but the cross-coupled stiffness coefficients decreased. The direct damping coefficient increased in the horizontal direction but decreased in the vertical direction as the preload increased. These model predictions will be useful as a benchmark against experimental test data.

Nonlinear Analysis of Curved Cable-Membrane Roof Systems (굴곡형 케이블-막 지붕 시스템의 비선형 해석)

  • Park, Kang-Geun;Kwun, Ik-No;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.45-55
    • /
    • 2017
  • The objective of this study is to estimate the mechanical characteristics and nonlinear behaviors on the geometric nonlinear analysis of curved cable-membrane roof systems for long span lightweight roof structures. The weight of a cable-membrane roof dramatically can reduce, but the single layer cable-membrane roof systems are too flexible and difficult to achieve the required structural stiffness. A curved cable roof system with reverse curvature works more effectively as a load bearing system, the pretension of cables can easily increase the structural stiffness. The curved cable roof system can transmit vertical loads in up and downward direction, and work effectively as a load bearing structure to resists self-weights, snow and wind loads. The nonlinear behavior and mechanical characteristics of a cable roof system has greatly an affect by the sag and pretension. This paper is carried out analyzing and comparing the tensile forces and deflection of curved roof systems by vertical loads. The elements for analysis uses a tension only cable element and a triangular membrane element with 3 degree of freedom in each node. The authors will show that the curved cable-membrane roof system with reverse curvature is a very lightweight and small deformation roof for external loads.

The Static and Dynamic Performance of a MEMS/MST Based Gas-Lubricated proceeding Bearing with the Slip Flow Effect

  • Kwak, H.-D.;Lee, Y.-B.;Kim, C.-H.;Lee, N.-S.;Choi, D.-H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.103-104
    • /
    • 2002
  • The influence of the slip flow on the MEMS/MST based gas-lubricated proceeding bearing is investigated. Based on the modified Reynolds equation, the numerical analysis of the finite difference method was developed by applying the first order slip flow approximation. The numerical prediction of bearing performance provides the significant results concerning the slip flow effect in micro scale gas-lubricated proceeding bearing. The result indicates that the load-carrying capacity as well as the rotordynamic coefficients were significantly reduced due to the slip flow. Through this work, it is concluded that the slip flow effect could not be ignored in the micro gas-lubricated proceeding bearing.

  • PDF

Operating Characteristics of Counterrotating Floating Ring Journal Bearings (역회전 프로팅링 저어널베어링의 운전특성)

  • 정연민;김경웅
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.28-34
    • /
    • 1991
  • The performance of the counterrotating floating ring journal bearing is analysed with isothermal finite bearing theory. The effect of counterrotating speed of the sleeve on the performance of the bearing is investigated. It is shown that counterrotating floating ring journal bearings properly designed can have considerable load capacity at the same counterrotating speed, while conventional circular journal bearing with one fluid film cannot. Investigating the relationship between the frictional torques on the ring due to the inner and outer films and the rotational speed of the ring, the stability of the equilibrium state is identified and the operating characteristics of the counterrotating floating ring journal bearing according to the method of acceleration or deceleration of the rotational speeds of the journal and sleeve are clarified. It is theoretically confirmed that floating ring journal bearings can be used in counterrotating journal-bearing system and become good substitutes for rolling bearings in counterrotating systems.

Analysis on the Static Performance of Vacuum-Preloaded Porous Air Bearings (진공예압형 다공질 공기베어링의 압력분포 및 성능해석)

  • Khim, Gyungho;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1327-1333
    • /
    • 2013
  • Air bearings are widely used in precision stages because of low friction and high motion accuracy, however, they suffer from low stiffness in comparison with rolling bearings or hydrostatic bearings. So, several preloading methods using weight, magnet and vacuum force, and opposing pads have been used to increase the stiffness of the air bearings. In this paper, pressure distributions of the vacuum preloaded porous air bearings are calculated using the proposed method. And then, the load capacity and stiffness are analyzed. For the vacuum preloaded air bearings, the stiffness is increased owing to reduced bearing clearance by vacuum force. The simulation results indicate that variation of vacuum pressure with clearance in the vacuum pocket gives rise to low stiffness, so the vacuum pocket should be designed for pressure to be constantly maintained regardless of the bearing clearance by means of large effective pumping speed.

The future role of smart structure systems in modern aircraft

  • Becker, J.;Luber, W.;Simpson, J.;Dittrich, K.
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.159-184
    • /
    • 2005
  • The paper intends to summarize some guidelines for future smart structure system application in military aircraft. This preview of system integration is based upon a review on approximately one and a half decades of application oriented aerospace related smart structures research. Achievements in the area of structural health monitoring, adaptive shape, adaptive load bearing devices and active vibration control have been reached, potentials have been identified, several feasibility studies have been performed and some smart technologies have been already implemented. However the realization of anticipated visions and previously initial timescales announced have been rather too optimistic. The current development shall be based on a more realistic basis including more emphasis on fundamental aircraft strength, stiffness, static and dynamic load and stability requirements of aircraft and interdisciplinary integration requirements and improvements of integrated actors, actuator systems and control systems including micro controllers.

Laboratory Test of Piled-Raft Foundation Improved by Gravel Mat (Gravel Mat로 보강된 말뚝지지 전면기초의 실내모형실험)

  • Seo, Young-Kyo;Lee, Jeong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.47-54
    • /
    • 2011
  • A piled raft foundation is one of the systems used to reduce the settlement of structures. However, the general design method for a piled raft foundation system assumes that the piles only support external loads, which exclude the bearing capacity of the raft itself. In this study, an experimental model test was performed to evaluate the raft capacity for the external load on the sand. Additionally, a part of the sandy ground under the raft was replaced with a gravel mat to reinforce the piled raft foundation system and increase the bearing capacity. Then, parametric studies of the reinforced ground were performed to determine the displacement and load-sharing ratio of the piled raft foundation system.

Theory vs. Experiment of Static Characteristics of Contrarotating Hydrostatic Journal Bearing with Overhung-Type Loads (외팔형 하중지지 이중 반전 정압 베어링의 정특성 이론 및 실험 연구)

  • 이용복;김창호;권오관;최동훈;이강복
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.92-99
    • /
    • 1996
  • Energy-efficient contrarotating propeller systems have been recently reviewed as one of alternative means in marine car-carrier applications. Contrarotating rotors preclude the usage of conventional plain journal bearings due to the lack of load carrying capacity. A new multi-recess hydrostatic contrarotating journal beating test facility has been designed and installed to test the static load carrying capacity. Measurements of flow rates and orbits have been investigated by testings on a overhung-type contrarotating rotor system which is supported by a hydrostatic journal bearing. Numerical results of static equilibria were compared with test results. Various contrarotating speed combinations, and supply pressure conditions were selected. The numerical predictions of orbit centers and flow rates are generally accurate.

Analysis of Fluid Flow Characteristics Around Rolling Element in Ball Bearings (볼 베어링의 구름 요소 주위 유동 특성에 대한 해석)

  • Jo, Jun Hyeon;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.278-282
    • /
    • 2012
  • Various bearings such as deep-groove ball bearings, angular-contact ball bearings, and roller bearings are used to support the load and to lubricate between the shaft and the housing. The bearings of potential rolling systems in a turbo pump are the deep-groove ball bearings as comparing with the bearings with rolling elements such as cylindrical rollers, tapered cylindrical rollers, and needle rollers. The deep-groove ball bearings consist of rolling elements, an inner raceway, an outer raceway and a retainer that maintain separation and help to lubricate the rolling element that is rotating in the raceways. In the case of water-lubricated ball bearings, however, fluid friction between the ball and raceways is affected by the entry direction of flow, rotation speed, and flow rate. In addition, this friction is the key factor affecting the bearing life cycles and reliability. In this paper, the characteristics of flow conditions corresponding to a deep-groove ball bearing are investigated numerically, with particular focus on the friction distribution on the rolling element, in order to extend the analysis to the area that experiences solid friction. A simple analysis model of fluid flow inside the water-lubricated ball bearing is analyzed with CFD, and the flow characteristics at high rotation speeds are presented.