• Title/Summary/Keyword: load adaptive

Search Result 663, Processing Time 0.033 seconds

High Performance Speed Control of SynRM Drive using FNN and NNC (FNN과 NNC를 이용한 SynRM 드라이브의 고성능 속도제어)

  • Kim, Soon-Young;Ko, Jae-Sub;Kang, Seong-Jun;Jang, Mi-Geum;Mun, Ju-Hui;Lee, Jin-Kook;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1113-1114
    • /
    • 2011
  • This paper is proposed design of high performance controller of SynRM drive using FNN and NNC. Also, This paper is proposed of designing fuzzy neural network controller(FNNC) which adopts the fuzzy logic to the artificial neural network(ANN). FNNC combines the capability of fuzzy reasoning in handling uncertain information and the capability of neural network in learning from processes. This controller is controlled speed using FNNC and model reference adaptive fuzzy control(MFC), and estimation of speed using ANN. The performance of proposed controller was demonstrated through response results. The results confirm that the proposed controller is high performance and robust under the variation of load torque and parameters.

  • PDF

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.249-256
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control (FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN, FLC and ANN controller.

Special Protection and Control Scheme for Transmission Line Overloading Elimination Based on Hybrid Differential Evolution/Electromagnetism-Like Algorithm

  • Hadi, Mahmood Khalid;Othman, Mohammad Lutfi;Wahab, Noor Izzri Abd
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1729-1742
    • /
    • 2017
  • In designing System Protection Schemes (SPSs) in power systems, protecting transmission network against extreme undesired conditions becomes a significant challenge in mitigating the transmission line overloading. This paper presents an intelligent Special Protection and Control Scheme (SPCS) using of Differential Evolution with Adaptive Mutation (DEAM) approach to obtain the optimum generation rescheduling to solve the transmission line overloading problem in system contingency conditions. DEAM algorithm employs the attraction-repulsion idea that is applied in the electromagnetism-like algorithm to support the mutation process of the conventional Differential Evolution (DE) algorithm. Different N-1 contingency conditions under base and increase load demand are considered in this paper. Simulation results have been compared with those acquired from Genetic Algorithm (GA) application. Minimum severity index has been considered as the objective function. The final results show that the presented DEAM method offers better performance than GA in terms of faster convergence and less generation fuel cost. IEEE 30-bus test system has been used to prove the effectiveness and robustness of the proposed algorithm.

Piezoelectric friction dampers for earthquake mitigation of buildings: design, fabrication, and characterization

  • Chen, Genda;Garrett, Gabriel T.;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.539-556
    • /
    • 2004
  • In this paper, the design, fabrication and characterization of a piezoelectric friction damper are presented. It was sized with the proposed practical procedure to minimize the story drift and floor acceleration of an existing 1/4-scale, three-story frame structure under both near-fault and far-field earthquakes. The design operation friction force in kip was numerically determined to range from 2.2 to 3.3 times the value of the peak ground acceleration in g (gravitational acceleration). Experimental results indicated that the load-displacement loop of the damper is nearly rectangular in shape and independent of the excitation frequency. The coefficient of friction of the damper is approximately 0.85 when the clamping force on the damper is above 400 lbs. It was found that the friction force variation of the damper generated by piezoelectric actuators with 1000 Volts is approximately 90% of the expected value. The properties of the damper are insensitive to its ambient temperature and remain almost the same after being tested for more than 12,000 cycles.

A hybrid simulated annealing and optimality criteria method for optimum design of RC buildings

  • Li, Gang;Lu, Haiyan;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.19-35
    • /
    • 2010
  • This paper proposes a hybrid heuristic and criteria-based method of optimum design which combines the advantages of both the iterated simulated annealing (SA) algorithm and the rigorously derived optimality criteria (OC) for structural optimum design of reinforced concrete (RC) buildings under multi-load cases based on the current Chinese design codes. The entire optimum design procedure is divided into two parts: strength optimum design and stiffness optimum design. A modified SA with the strategy of adaptive feasible region is proposed to perform the discrete optimization of RC frame structures under the strength constraints. The optimum stiffness design is conducted using OC method with the optimum results of strength optimum design as the lower bounds of member size. The proposed method is integrated into the commercial software packages for building structural design, SATWE, and for finite element analysis, ANSYS, for practical applications. Finally, two practical frame-shear-wall structures (15-story and 30-story) are optimized to illustrate the effectiveness and practicality of the proposed optimum design method.

Large deflections of spatial variable-arc-length elastica under terminal forces

  • Phungpaingam, Boonchai;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.501-516
    • /
    • 2009
  • This paper aims to study the large deflections of variable-arc-length elastica subjected to the terminal forces (e.g., axial force and torque). Based on Kirchhoff's rod theory and with help of Euler parameters, the set of nonlinear governing differential equations which free from the effect of singularity are established together with boundary conditions. The system of nonlinear differential equations is solved by using the shooting method with high accuracy integrator, seventh-eighth order Runge-Kutta with adaptive step-size scheme. The error norm of end conditions is minimized within the prescribed tolerance ($10^{-5}$). The behavior of VAL elastica is studied by two processes. One is obtained by applying slackening first. After that keeping the slackening as a constant and then the twist angle is varied in subsequent order. The other process is performed by reversing the sequence of loading in the first process. The results are interpreted by observing the load-deflection diagram and the stability properties are predicted via fold rule. From the results, there are many interesting aspects such as snap-through phenomenon, secondary bifurcation point, loop formation, equilibrium configurations and effect of variable-arc-length to behavior of elastica.

Efficiency Optimization Control of IPMSM Drive using SPI Controller (SPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.15-25
    • /
    • 2011
  • This proposes an online loss minimization algorithm for series PI(SPI) based interior permanent magnet synchronous motor(IPMSM) drive to yield high efficiency and high dynamic performance over wide speed range. The loss minimization algorithm is developed based on the motor model. In order to minimize the controllable electrical losses of the motor and thereby maximize the operating efficiency, the d-axis armature current is controlled optimally according to the operating speed and load conditions. For vector control purpose, a SPI is used as a speed controller which enables the utilization of the reluctance torque to achieve high dynamic performance as well as to operate the motor over a wide speed range. Also, this paper proposes current control of model reference adaptive fuzzy controller(MFC), and estimation of speed using artificial neural network(ANN) controller. The proposed efficiency optimization control, SPI, MFC, ANN in this paper is applied to IPMSM drive system, the validity of this paper is proved by analyzing response characteristics in variety operating conditions.

Efficient Logical Topology Design Considering Multiperiod Traffic in IP-over-WDM Networks

  • Li, Bingbing;Kim, Young-Chon
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • In recent years energy consumption has become a main concern for network development, due to the exponential increase of network traffic. Potential energy savings can be obtained from a load-adaptive scheme, in which a day can be divided into multiple time periods according to the variation of daily traffic patterns. The energy consumption of the network can be reduced by selectively turning off network components during the time periods with light traffic. However, the time segmentation of daily traffic patterns affects the energy savings when designing multiperiod logical topology in optical wavelength routed networks. In addition, turning network components on or off may increase the overhead of logical topology reconfiguration (LTR). In this paper, we propose two mixed integer linear programming (MILP) models to design the optimal logical topology for multiple periods in IP-over-WDM networks. First, we formulate the time-segmentation problem as an MILP model to optimally determine the boundaries for each period, with the objective to minimize total network energy consumption. Second, another MILP formulation is proposed to minimize both the overall power consumption (PC) and the reconfiguration overhead (RO). The proposed models are evaluated and compared to conventional schemes, in view of PC and RO, through case studies.

Analysis on Active spring effect in human-body having redundant actuation with application to motion frequency (여유구동을 지닌 인체의 능동스프링 현상에 대한 해석과 운동주파수 제어방식으로의 적용)

  • Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.977-989
    • /
    • 1999
  • The purpose of this study is to analyze how the human body having more muscles than its degree-of-freedom modulates an effective stiffness using redundant actuation, and to apply this concept to the design and control of advanced machines which requires adaptable spring. To investigate the adaptable stiffness phenomenon due to redundant actuation in the human body, this paper derives a general stiffness model of the Human body. In particular, for a planar 1 DOF human arm model, a planar 2 DOF human arm model, a spherical 3 DOF shoulder model, a 4 DOF human arm model, and a 7 DOF human arm model, the required nonlinear geometry ad the number of required actuator for successful modulation of the effective stiffness are analyzed along with a load distribution method for modulation of the required stiffness of such systems. Secondly, the concept of motion frequency modulation is introduced to show the usefulness of adaptive stiffness modulation. The motion frequency modulation represents a control of stiffness and / or inertia properties of systems. To show the effectiveness of the proposed algorithm, simulations are performed for 2 DOF anthropomorphic robot.

  • PDF

Design of an Adaptive Video-based Community in Ubiquitous Environment (유비쿼터스 환경에서 적응력있는 화상 커뮤니티의 설계)

  • Sung, Young-Hoon;Ha, Seok-Wun;Lee, Jae-Inn
    • Journal of The Korean Association of Information Education
    • /
    • v.11 no.2
    • /
    • pp.243-249
    • /
    • 2007
  • Most homepages of schools are available to publicize activities of education, to load educational materials efficiently. But we can't use current homepages of schools in making characteristic information or sharing educational resources. In this study, this I-CUBE system with RSS was designed and embodied for sharing characteristic educational activities and works in schools. Currently, I-CUBE is being under experimental test for sharing education activities and making community in elementry schools,.

  • PDF