• Title/Summary/Keyword: load adaptive

Search Result 663, Processing Time 0.028 seconds

A New Adaptive Sliding Mode Observer-Based Control of Induction Motors with Uncertainties (새로운 적응 슬라이딩 모드 관측기에 기초한 불확실성을 갖는 유도전동기 제어)

  • Hwang, Young-Ho;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1276-1278
    • /
    • 2005
  • In this paper, we propose an adaptive sliding mode observer-based control of induction motors with uncertainties. The proposed adaptive sliding mode flux observer generates estimates both for the unknown parameters(load torque and rotor resistance) and for the unmeasured state variable (rotor fluxes); they converge to the corresponding true value under persistency of excitation which actually holds in typical operating conditions. The proposed controller guarantees speed tracking and bounded signals for every initial condition of the motor. Simulations show that all estimation errors tend quickly to zero so that high tracking performances are achieved both for speed and rotor flux.

  • PDF

Control Characteristics Improvement of Single Rod Hydraulic Cylinder Subjected to Varying Load (가변하중을 받는 유압실린더의 제어특성개선)

  • Yum, Man-Oh
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • For position control of electro-hydraulic servo system, single rod cylinders and double rod cylinders are used. Single rod cylinders have simple structure for manufacturing but different volume ratio of two sides induce to non-linearity in process of then mathematical modeling. So only with conventional PID control method it is difficult to control single rod cylinders precisely. For mole precise position control of single rod cylinders, a controller which is inserted a velocity feedback PID controller and MRAC controller are proposed. With experiment control performances of three control methods are compared. In case of experiment, for external varying load to the system, a hydraulic cylinder and a pressure control valve are used. In conclusion a MRAC is considered a suitable control method for external varying load.

  • PDF

A Study on Protection system to the Load Characteristics on the AC Feeder System (부하 특성에 따른 교류 급전시스템에서의 보호방식 연구)

  • Jung Ho-Sung;Han Moon-Seob;Lee Chang-Mu;Kim joorak
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1370-1372
    • /
    • 2004
  • At present. distance relay and ${\Delta}I$ current increment relay are used as primary and secondary protection in the AC feeder system. However. electric railway vehicles according to power electronic's development had developed resistance control, thyristor phase control and PWM control system. and operation of train is increasing in a feeder section. Therefore this paper analyzes the load characteristics and situation of relay's maloperation caused by load current increase, harmonics, regenerative braking current and operation of the different vehicles in same feeder section. Based on this analysis. this paper proposes consideration items for relay correction and advanced adaptive relay that can change operation area according to load current.

  • PDF

Short-term load forscasting using general exponential smoonthing (지수평활을 이용한 단기부하 예측)

  • Koh, Hee-Soog;Lee, Chung-Sig;Chong, Hyong-Hwan;Lee, Tae-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.29-32
    • /
    • 1993
  • A technique computing short-term load foadcasting is essential for monitoring and controlling power system operation. This paper shows the use of general exponential smoothing to develop an adaptive forecasting system based on observed value of hourly demand. Forecasts of hourly load with lead times of one to twenty-four hours are computed at hourly intervals throughout the week. Standard error for lead times of one to twenty-four hour range from three to four percent average load. Studies are planned to investigate the use of weather influence to increase forecast accuracy.

  • PDF

Load Balancing and Interference Delay Aware Routing in IoT Aware Wireless Mesh Networks

  • Jilong Li;Murad Khan;Byeongjik Lee;Kijun Han
    • Journal of Internet Technology
    • /
    • v.20 no.1
    • /
    • pp.293-300
    • /
    • 2019
  • The Internet of Things (IoT) enables embedded devices to connect to the internet either through IP or the web in a physical environment. The increase in performance of wireless access services, adaptive load balancing, and interference routing metric becomes the key challenges in Wireless Mesh Networks (WMN). However, in the case of IoT over WMN, a large number of users generate abundant net flows, which can result in network traffic jam. Therefore, in this paper, we propose a Load Balancing and Interference Delay Aware routing metric algorithm to efficiently address the issues present in the current work. The proposed scheme efficiently utilizes the available mesh station queue information and the number of mesh stations suffering from channel interference in the available path. The simulations results show that the proposed scheme performed superior to the existing routing metrics present in the current literature for similar purposes.

A CMOS Voltage Driver for Voltage Down Converter (전압 강하 변환기용 CMOS 구동 회로)

  • 임신일;서연곤
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.974-984
    • /
    • 2000
  • A CMOS voltage driver circuit for voltage down converter is proposed. An adaptive biasing technique is used to enhance load regulation characteristics. The proposed driver circuit uses the NMOS transistor as a driving transistor, so it does not suffer from large Miller capacitances which is one of the problems with conventional PMOS driving transistor, and hence achieves good phase margin and stable frequency response. No additional complex circuit for frequency compensation such as compensation capacitor is required in this implementation. For the same current capability, the size of NMOS transistor in driver circuit is smaller than that of PMOS counterpart. So the smaller die area can be achieved. The circuits is implemented using a 0.8 ${\mu}{\textrm}{m}$ CMOS process and has a die area of 150 ${\mu}{\textrm}{m}$ x 360 ${\mu}{\textrm}{m}$. Proposed circuit has a quiescent power of 60 . In the current driving range from 100 $mutextrm{A}$ to 50 ㎃, load regulation of 5.6 ㎷ is measured.

  • PDF

MRAS Speed Estimator Based on Type-1 and Type-2 Fuzzy Logic Controller for the Speed Sensorless DTFC-SVPWM of an Induction Motor Drive

  • Ramesh, Tejavathu;Panda, Anup Kumar;Kumar, S. Shiva
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.730-740
    • /
    • 2015
  • This paper presents model reference adaptive system speed estimators based on Type-1 and Type-2 fuzzy logic controllers for the speed sensorless direct torque and flux control of an induction motor drive (IMD) using space vector pulse width modulation. A Type-1 fuzzy logic controller (T1FLC) based adaptation mechanism scheme is initially presented to achieve high performance sensorless drive in both transient as well as in steady-state conditions. However, the Type-1 fuzzy sets are certain and cannot work effectively when a higher degree of uncertainties occurs in the system, which can be caused by sudden changes in speed or different load disturbances and, process noise. Therefore, a new Type-2 FLC (T2FLC) - based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties, improve the performance, and is also robust to different load torque and sudden changes in speed conditions. The detailed performance of different adaptation mechanism schemes are performed in a MATLAB/Simulink environment with a speed sensor and sensorless modes of operation when an IMD is operates under different operating conditions, such as no-load, load, and sudden changes in speed. To validate the different control approaches, the system is also implemented on a real-time system, and adequate results are reported for its validation.

Current Sliding Mode Control with a Load Sliding Mode Observer for Permanent Magnet Synchronous Machines

  • Jin, Ningzhi;Wang, Xudong;Wu, Xiaogang
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • The sliding mode control (SMC) strategy is applied to a permanent magnet synchronous machine vector control system in this study to improve system robustness amid parameter changes and disturbances. In view of the intrinsic chattering of SMC, a current sliding mode control method with a load sliding mode observer is proposed. In this method, a current sliding mode control law based on variable exponent reaching law is deduced to overcome the disadvantage of the regular exponent reaching law being incapable of approaching the origin. A load torque-sliding mode observer with an adaptive switching gain is introduced to observe load disturbance and increase the minimum switching gain with the increase in the range of load disturbance, which intensifies system chattering. The load disturbance observed value is then applied to the output side of the current sliding mode controller as feed-forward compensation. Simulation and experimental results show that the designed method enhances system robustness amid load disturbance and effectively alleviates system chattering.

Application of Neural Network Adaptive Control for Real-time Attitude Control of Multi-Articulated Robot (다관절 로봇의 실시간 자세제어를 위한 신경회로망 적응제어의 적용)

  • Lee, Seong-Su;Park, Wal-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.50-55
    • /
    • 2011
  • This research is to apply the adaptive control of neuron networks for the real-time attitude control of Multi-articulated robot. Multi-articulated robot is expressed with a complicated mathematical model on account of the mechanic, electric non-linearity which each articulation of mechanism has, and includes an unstable factor in time of attitude control. If such a complex expression is included in control operation, it leads to the disadvantage that operation time is lengthened. Thus, if the rapid change of the load or the disturbance is given, it is difficult to fulfill the control of desired performance. In this research we used the response property curve of the robot instead of the activation function of neural network algorithms, so the adaptive control system of neural networks constructed without the information of modeling can perform a real-time control. The proposed adaptive control algorithm generated control signs corresponding to the non-linearity of Multi-articulated robot, which could generate desired motion in real time.

An Effective Adaptive Autopilot for Ships

  • Le, Minh-Duc;Nguyen, Si-Hiep;Nguyen, Lan-Anh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.720-723
    • /
    • 2005
  • Ship motion is a complex controlled process with several hydrodynamic parameters that vary in wide ranges with respect to ship load condition, speed and surrounding conditions (such as wind, current, tide, etc.). Therefore, to effectively control ships in a designed track is always an important task for ship masters. This paper presents an effective adaptive autopilot ships that ensure the optimal accuracy, economy and stability characteristics. The PID control methodology is modified and parameters of a PID controller is designed to satisfy conditions for an optimal objective function that comprised by heading error, resistance and drift during changing course, and loss of surge velocity or fuel consumption. Designing of the controller for course changing process is based on the Model Reference Adaptive System (MRAS) control theory, while as designing of the automatic course keeping process is based on the Self Tuning Regulator (STR) control theory. Simulation (using MATLAB software) in various disturbance conditions shows that in comparison with conventional PID autopilots, the designed autopilot has several notable advantages: higher course turning speed, lower swing of ship bow even in strong waves and winds, high accuracy of course keeping, shorter time of rudder actions smaller times of changing rudder direction.

  • PDF