• Title/Summary/Keyword: load - reducing

Search Result 1,091, Processing Time 0.026 seconds

A Study on the Load Distribution Ratio and Axial Stiffness on Existing and Reinforcing-Pile in Vertical Extension Remodeling (수직증축시 기존말뚝과 보강말뚝의 하중분담율 및 축강성 분석)

  • Jeong, Sang-Seom;Cho, Hyun-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.17-30
    • /
    • 2019
  • This study presents the application of the numerical and analytical technique to simulate the Load Distribution Ratio (LDR) and to define axial stiffness on reinforcing pile foundation ($K_{vr}$) in vertical extension remodeling structure. The main objective of this study was to investigate the LDR between existing piles and reinforcing piles. Therefore, to analyze the LDR, 3D FEM analysis was performed as variable for elastic modulus, pile end-bearing condition, raft contacts, and relative position of reinforcing pile in a group. Also, using the axial stiffness ($K_{ve}$) of existing piles, the axial stiffness of reinforcing pile was defined by 3D approximate computer-based method, YSPR (Yonsei Piled Raft). In addition $K_{vr}$ was defined by reducing the $K_{ve}$considering the degradation of the existing piles.

Reduction Efficiency Analysis of Furrow Vegetation and PAM (Polyacrylamide) Mulching for Non-Point Source Pollution Load from Sloped Upland During Farming Season (경사밭 고랑 식생 및 PAM (Polyacrylamide) 멀칭에 따른 영농기 비점오염 저감효과 분석)

  • Yeob, So-Jin;Kim, Min-Kyeong;An, Nan-Hee;Choi, Soon-Kun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • As a result of climate change, non-point source pollution (NPS) from farmland with the steep slope during the rainy season is expected to have a significant impact on the water system. This study aimed to evaluate the effect of furrow mulching using alfalfa and PAM (Polyacrylamide) materials for each rainfall event, while considering the load characteristics of NPS. The study was conducted in Wanju-gun, Jeollabuk-do, in 2022, with a testbed that had a slope of 13%, sandy loam soil, and maize crops. The testbed was composed of four plots: bare soil (Bare), No mulching (Cont.), Vegetation mulching (VM), and PAM mulching (PM). Runoff was collected from each rainfall event using a 1/40 sampler and the NPS load was calculated by measuring the concentrations of SS, T-N, T-P, and TOC. During farming season, the reduction efficiency of NPS load was 37.1~59.5% for VM and 38.2~75.7% for PM. The analysis found that VM had a linear regression correlation (R2=0.28~0.86, P-value=0.01~0.1) with elapsed time of application, while PM had a quadratic regression correlation (R2=0.35~0.80, P-value=0.1). These results suggest that the selection of furrow mulch materials and the appropriate application method play a crucial role in reducing non-point pollution in farmland. Therefore, further studies on the time-series reduction effect based on the application method are recommended to develop more effective preemptive reduction technologies.

Stability Evaluation of Track on Conventional Line According to Traveling Tilting Train (틸팅차량 주행에 따른 기존선 궤도의 주행안정성 평가)

  • Park, Yong-Gul;Eum, Ki-Young;Choi, Jung-Youl;Sung, Deok-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.701-708
    • /
    • 2007
  • A tilting train, which was developed to run the curve section without reducing the speed and compromising the riding quality, can improve the speed so as to reduce the travel time, compared to the existing trains. Then the force generated by the train operation to the track is in proportion to train operation speed, which means the track shall bear the increased force as much as the increase in train operation speed. Particularly, wheel load and lateral wheel load generated by train operation and distributed to the rail tend to cause the track to suffer the strain and furthermore the severe disaster such as derailment. To deal with such problem and ensure the train will run safety and stably, the tolerance in wheel load change, lateral wheel load and derailment coefficient was determined for quantitative evaluation of the train operation stability. In this study, derailment coefficient of inner and outer rail at existing curve section of tilting train was determined to evaluate the curve radius, possibility of acceleration and the need of rail improvement, which was then compared with the existing traditional train and high speed train. Conducting the quantitative evaluation of dynamic wheel load and lateral wheel load of each train, which was based on field survey, derailment coefficient and static & dynamic wheel load change, which serve the evaluation criteria of train operation stability, were determined for comparison with the standards, thereby analyzing the stability of the tilting train.

A Comparative Study on the Exterior Rotor BLDC Motor According to the Rotor Permanent Magnet Shape (회전자 영구자석 형상에 따른 외전형 BLDC 전동기의 특성비교 연구)

  • Jeong, Jae-Hoon;Cho, Han-Wook;Choi, Jang-Young;Im, Young-Hun;Jang, Seok-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.237-244
    • /
    • 2014
  • In this paper, we presented a study on the design of permanent magnet rotor for exterior rotor type brushless direct current(BLDC) motor. To reduce the cogging torque and torque ripple, the specific shape and magnetization pattern of permanent magnets in BLDC motors are suggested. Firstly, four permanent magnet models with different shapes and magnetization arrays are presented. The results from the finite element method(FEM), the most effective model for reducing cogging torque and torque ripple was presented. In addition, to confirm the steady state performance, the torque-speed characteristic analysis has been performed with variable speed and load. Finally, the best permanent magnet model for reducing cogging torque and torque ripple with appropriate torque-speed performance was selected through the comparison according to the device volume.

Effect of Thermal Stratification for Reducing Pressure Rise Rate in HCCI Combustion Based on Multi-zone Modeling (Multi Zone Modeling을 이용한 온도 성층화의 효과를 갖는 예혼합압축자기착화엔진의 압력상승률 저감에 대한 모사)

  • Kwon, O-Seok;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.32-39
    • /
    • 2009
  • The HCCI engine is a next generation engine, with high efficiency and low emissions. The engine may be an alternative to SI and DI engines; however, HCCI's operating range is limited by an excessive rate of pressure rise during combustion and the resulting engine knock in high-load. The purpose of this study was to gain a understanding of the effect of only initial temperature and thermal stratification for reducing the pressure-rise rate in HCCI combustion. And we confirmed characteristics of combustion, knocking and emissions. The engine was fueled with Di-Methyl Ether. The computations were conducted using both a single-zone model and a multi-zone model by CHEMKIN and modified SENKIN.

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

The Evaluation in Displacement Response of Tapered Tall Buildings to Wind Load (풍하중을 받는 테이퍼 고층건물의 진동변위응답 평가)

  • Cho, Ji-Eun;You, Ki-Pyo;Kim, Jong-Soo;Kim, Young-Moon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.101-108
    • /
    • 2005
  • The investigations for mitigating wind-induced excitations of tall buildings have been carried out. The aerodynamic modification of a building shape changing the cross-section with height through tapering, which alters the flow pattern around the building, could reduce wind induced excitations of tall buildings. The fart that a tapered tall building might spread the vortex-shedding over a broad range of frequencies makes more effective for reducing acrosswind responses has been established. In this paper, to investigate the tapering effect for reducing wind-induced responses of a tapered tall building, high-frequency force-balance test was conducted. The six types of building models which have different taper ratio of 2.5%, 5%, 7.5%, 10%, 15% and one basic building model of a square cross-section were tested under the two typical boundary layers representing suburban and urban flow environment. The effect of wind direction was also considered.

  • PDF

A Study on Thermal Comfortable Following the Thermal Environment Migration in Detached Housing Area (열환경 완화를 통한 주택지내 쾌적성 확보에 관한 연구)

  • Ryu, Ji-Won;Jung, Eung-Ho;Hoyano, Akira;Kim, Dae-Wuk
    • Journal of the Korean housing association
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • This study aims to improve the thermal comfort level of detached housing area by reducing the impact of thermal environment. The study focused on reducing surface temperature that is generated in buildings and adjacent spaces as a result of sensible heat load and presented a proposal on implementing planting method considering its outdoor condition and structure and composed materials. To perform the study, we utilized 3D-CAD to examine the outdoor condition and structure and composed materials that impact on surface temperature and conducted space design after reflecting climatic elements in simulations. The result is as follows. In reviewing temperature distribution of Heat Island Potential (HIP) of buildings and adjacent spaces, in case where green coverage ratio is increased, there was a $6^{\circ}C$ temperature difference and in regard to changes in the thermal environment in detached housing area, in case where rooftop planting, surface improvement, planting, and overall green coverage ratio is increased, there was a $10^{\circ}C$ temperature difference. In addition, there was difference in temperature in detached housing area following the changes in wind.

Design of Controller for Reducing In-Rush Current of Single-Phase Induction Motor (단상유도전동기의 돌입전류저감을 위한 제어기 설계)

  • Park, Su-Kang;Baek, Hyung-Lae;Lee, Sang-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.5
    • /
    • pp.238-245
    • /
    • 2001
  • During an AC motor's start-up accelerating period, a large amount of current is required to reach to the rating speed. This is called in-rush current. This peak in-rush current can be more than about several times the operating or steady-state current in the full load rating of the motor. In-rush current is present in both and electronic ballasts. The main area of concern is the tripping of circuit breaker and fuses which can affect electrical system components From this, we can see that the electrical power controllers will be rather concerned, since they have to supply the actual current necessary to start the motor. This paper presents a new method to reducing in-rush current and energy saving of the single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch.

  • PDF

Development and Shaking Table Tests of a Base Isolator for Controling Subway Train-Induced Vibration of a Steel Building (지하철 진동에 대한 철골건물 기초진동 절연장치의 개발 및 진동대 실험)

  • Kim, Jin-Koo;Song, Young-Hoon;Kwun, Hyong-Oh;Huh, Young
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.789-796
    • /
    • 1997
  • In this study a conventional rubber mount and a new form of base isolator made of steel spring coated with natural and articial rubber were manufactured and tested on a shaking table to investigate the capacity of reducing the vertical vibration of a building induced by subway train. The model structure used in the test is a 1/4 scaled steel structure, and a white noise input and train vibration records were used to check the effectiveness of the isolators. According to the results all three types of isolators turned out to perform effectively in reducing the acceleration and the natural rubber-coated one is ranked best among the isolators. However the vertical displacement of the model is increased due to the instolation of the bearings, and the safty against the lateral load induced by earthquake ground motion should be provided to be able to apply the system to the real buildings.

  • PDF