• Title/Summary/Keyword: load (forces)

Search Result 1,186, Processing Time 0.029 seconds

Sequential pattern load modeling and warning-system plan in modular falsework

  • Peng, Jui-Lin;Wu, Cheng-Lung;Chan, Siu-Lai
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.441-468
    • /
    • 2003
  • This paper investigates the structural behavior of modular falsework system under sequential pattern loads. Based on the studies of 25 construction sites, the pattern load sequence modeling is defined as models R (rectangle), L and U. The study focuses on the system critical loads, regions of largest reaction forces, discrepancy between the pattern load and the uniform load, and the warning-system plan. The analysis results show that the critical loads of modular falsework systems with sequential pattern loads are very close to those with the uniform load used in design. The regions of largest reaction forces are smaller than those calculated by the uniform load. However, the regions of largest reaction forces of three models under sequential pattern loads can be considered as the crucial positions of warning-system based on the measured index of loading. The positions of the sensors for the warning-system for these three different models are not identical.

Prediction and Experiments of Cutting Forces in End Milling (엔드밀 가공의 절삭력 예측 및 실험)

  • 이신영;임용묵
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.9-15
    • /
    • 2004
  • A reasonable analysis of cutting force in end milling may give much advantage to improvement of productivity and cutting tool life. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. The specific cutting constants of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, feed, axial depth, and radial depth of cut. The model is verified through comparisons of model predicted cutting forces with measured cutting forces obtained from machining experiments. The results showed good agreement and from that we could predict reasonably the cutting forces in end milling.

A STUDY OF THE TENSILE LOAD OF SEVERAL CLASPS ACCORDING TO VARIOUS UNDERCUT AREA (수종의 클래스프의 언더커트에 따른 인장력에 관한 연구)

  • Kim, Boong-Hwan;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.3
    • /
    • pp.470-485
    • /
    • 1997
  • A fundamental principle in clasp selection for a specific abutment is the reduction of the transmission of excessive forces to the abutment tooth. Those forces include tilting, tipping, and stress on the abutment tooth. The flexibility of a clasp was believed to directly affect the reduction of such forces. Opinions have been expressed concerning the proper type of clasp to be used to prevent stress on periodontium. In order to evaluate and compare the various designs of a clasp system, it is necessary to measure these forces. This study compared the average measurements of forces required to dislodge three kinds of circumferential clasps having different amount of undercuts : the first with a round retentive arm, the second with a half round retentive arm, the third with a wrought wire retentive arm under tensile load. Three commonly used undercuts( 0.01, 0.02, 0.03 inch) were created on nine cast crowns, premolars and molars. The test was run six times for a same clasp. The means of tensile load required to dislodge each of the different clasps were compared statistically using the ANOVA test and multiple range test (Duncan test). The results were as follows. 1. The amount of tensile load of the wrought wire clasp was significantly different from the cast round or half round clasp (p<0.05). 2. The more amount of the undercut, the more tensile load was needed to dislodge the clasps. There were significant differences among them (p<0.05). 3. The molar showed higher tensile load than the premolar, and there was significant difference (p<0.05). 4. The means of tensile load according to clasp types showed significant differences at the molar between wrought wire clasp and cast clasp (p<0.05), but did not at the premolar.

  • PDF

An efficient method for universal equivalent static wind loads on long-span roof structures

  • Luo, Nan;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.493-506
    • /
    • 2017
  • Wind-induced response behavior of long-span roof structures is very complicated, showing significant contributions of multiple vibration modes. The largest load effects in a huge number of members should be considered for the sake of the equivalent static wind loads (ESWLs). Studies on essential matters and necessary conditions of the universal ESWLs are discussed. An efficient method for universal ESWLs on long-span roof structures is proposed. The generalized resuming forces including both the external wind loads and inertial forces are defined. Then, the universal ESWLs are given by a combination of eigenmodes calculated by proper orthogonal decomposition (POD) analysis. Firstly, the least squares method is applied to a matrix of eigenmodes by using the influence function. Then, the universal ESWLs distribution is obtained which reproduces the largest load effects simultaneously. Secondly, by choosing the eigenmodes of generalized resuming forces as the basic loading distribution vectors, this method becomes efficient. Meanwhile, by using the constraint equations, the universal ESWLs becomes reasonable. Finally, reproduced largest load effects by load-response-correlation (LRC) ESWLs and universal ESWLs are compared with the actual largest load effects obtained by the time domain response analysis for a long-span roof structure. The results demonstrate the feasibility and usefulness of the proposed universal ESWLs method.

Effects of Cutting Conditions on Specific Cutting Force Coefficients in Milling (밀링가공시 절삭조건이 비절삭력계수에 미치는 영향 분석)

  • 이신영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.93-98
    • /
    • 2004
  • A reasonable analysis of cutting force in end milling may give much advantage to improvement of productivity and cutting tool life. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. Specific cutting constants of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, feed, axial depth, and radial depth of cut. The effects of the cutting conditions on the specific cutting force constants in milling were studied. The model is verified through comparisons of model predicted cutting forces with measured culling forces obtained from machining experiments

  • PDF

A Study on the Measurement of Constraint Force of STS304 Thin plate Using the Load Cell (로드셀을 이용한 STS304 박판용접부의 구속력 측정에 관한 연구)

  • 고준빈;최원두;이성구;박성두;이영호
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.548-554
    • /
    • 2001
  • The restraint force is required an accurate measurement and analysis to protect weldment from residual stress. Also, this residual stress caused by clacks in weldments are often observed in the weldments of large size nozzles or radial tanks after welding. This paper is preformed on the study of evaluation of welding restraint forces using load cell with STS thin plate which are using pressure vessel steel in the industry field. As a result of this study, as the welding currents are higher and the welding speeds are more slowly, the magnitude of restraint force in process of the flat plate welding hows to be more large. Also, the temperature in process of melting is increasingly rising, then the restraint forces exhibit the compressive forces, whereas the restraint forces during cooling represent extensional force.

  • PDF

Effects of Cutting Conditions on Specific Cutting Force Coefficients in End Milling (엔드밀 가공시 절삭조건이 비절삭력계수에 미치는 영향)

  • Lee Sin-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.1-9
    • /
    • 2004
  • For improvement of productivity and cutting tool lift, cutting force in end milling needs to be predicted accurately. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. Specific cutting force coefficients of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, fled, axial depth and radial depth of cut. The effects of the cutting conditions on the specific cutting force constants in milling were studied. The model is verified through comparisons of model predicted cutting forces with measured cutting forces obtained from machining experiments.

금형강의 앤드밀 가공시 동적모델에 의한 절삭력 예측

  • 이기용;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.49-54
    • /
    • 1994
  • A dynamic model for the cutting process in the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model, which uses instantaneous specific cutting force, includes both regenerative effect and penetration effect. The model is verified through comparisons of model predicted cutting force with measured cutting forces obtained from machining experiments.

  • PDF

The Effect of Machinery House Location on the Stability of High Efficiency Gantry Crane (기계실 위치 변화가 고효율 갠트리 크레인의 안정성에 미치는 영향 분석)

  • Lee S.W.;Han G.J.;Shim J.J.;Han D.S.;Gwon S.G.;Kim T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1605-1608
    • /
    • 2005
  • This study was carried out to analyze the effect of machinery house location on the stability of high efficiency gantry crane which can improve the productivity of the container transportation wok by reducing cycle time. The wind load was evaluated according to 'Load Criteria of Building Structures' enacted by the ministry of construction & transportation. The uplift forces of high efficiency gantry crane under this wind load were calculated by analyzing reaction forces at each supporting point. And variation of reaction forces at each supporting point was analyzed according to machinery house location.

  • PDF

Simplified slab design approach for parking garages with equivalent vehicle load factors

  • Kwak, Hyo-Gyoung;Song, Jong-Young
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.305-321
    • /
    • 2000
  • This paper develops a simplified, but effective, algorithm in obtaining critical slab design moments for parking garages. Maintaining the uniformly distributed load concept generally adopted in the design of building structures, this paper also introduces the equivalent vehicle load factors, which can simulate the vehicle load effects without taking additional sophisticated numerical analyses. After choosing a standard design vehicle of 2.4 tons through the investigation of small to medium vehicles made in Korea, finite element analyses for concentrated wheel loads were conducted by referring to the influence surfaces. Based on the obtained member forces, we determined the equivalent vehicle load factors for slabs, which represent the ratios for forces under vehicle loads to these under uniformly distributed loads. In addition, the relationships between the equivalent vehicle load factors and sectional dimensions were also established by regression, and then used to obtain the proper design moments by vehicle loads. The member forces calculated by the proposed method are compared with the results of four different approaches mentioned in current design codes, with the objective to establish the relative efficiencies of the proposed method.