• Title/Summary/Keyword: liver protective effect

Search Result 583, Processing Time 0.032 seconds

Enzyme hydrolysate of silk protein suppresses tert-butyl hydroperoxide-induced hepatotoxicity by enhancing antioxidant activity in rats

  • Suh, Hyung Joo;Kang, Bobin;Kim, Chae-Young;Choi, Hyeon-Son
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.550-558
    • /
    • 2017
  • The purpose of current study is to investigate the beneficial effect of enzyme (Alcalase) hydrolysates of silk protein in rat. Alcalase-treated silk protein hydrolysate (ATSH) itself did not show any cytotoxicity on the hepatic tissues and blood biochemistry, similar to the normal condition. ATSH played a protective role in tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity and liver damage. The values of AST (aspartate aminotransferase) and ALT (alanine aminotransferase), which are the indicators of the liver function, were effectively alleviated with the ATSH treatment in a dose dependent manner. The level of Lactate dehydrogenase (LDH) and Malondialdehyde (MDA), which were increased with t-BHP treatment, were significantly reduced by ATSH. High dose of ATSH (2 g/kg) reduced the t-BHP-induced LDH release by 48%. Antioxidant and antioxidant enzymes in liver cells were significantly increased by ATSH treatment in their level and activities. ATSH (2 g/kg) increased glutathione (GSH), an intracelluar antioxidant, by 2.5-fold compared with the t-BHP treated group. The activities of glutathione-s-transferase (GST), superoxide dismutase (SOD), and catalase were also elevated by 38%, 60%, and 45%, respectively, with ATSH (2 g/kg) treatment. The antioxidative effect of ATSH was recapitulated to the protection from t-BHP induced liver damages in hematoxylin and eosin (H&E) staining. Thus, ATSH might be used as a hepatoprotective agent.

Inhibitory Effect of Angelica keiskei Koidz Green Juice on the Liver Damage in CCl4-Treated Rats (신선초 녹즙이 사염화탄소 투여에 의한 흰쥐의 간 손상에 미치는 영향)

  • 이명렬;정희경;박평심;허남칠;김성오;김경수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.531-536
    • /
    • 1998
  • To investigate effects of Angelica keiskei Koidz green juice on the liver damage of CCl4-treated tats, Sprague-Dawley male rats weighing 80~100g were divided into 4 groups of control group(CON), Angelica keiskei Koidz green juice-treated group(ANJ), CCl4-treated group(CCL) and Angelica keiskei Kodiz green juice and CCl4-treated group(ACL). Each group was sacrified after feeding for 4 weeks and examined the activities of transminase (sGOT, sGPT), superoxide dismutase (SOD), catalase and glutathione peroxidase(GSH-Px), and contents of lipid peroxide and glutathione in liver. The activities of sGOT and sGPT, and content of lipid peroxide after CCl4 treatment were markedly increased, compared to CON, but those levels were significantly decreased by the pretreatment of Angelica keiskei Koidz green juice as compared to CCL. The activities of SOD, catalase and GSH-Px were elevated by CCl4-treatment as compared to control group, and concomitant treatment of Angelical keiskei Koidz and CCl4 decreased those levels significantly except the activity of catalase. The hepatic content of glutathione was decreased by CCl4 and increased more abundant by Angelica keiskei Koidz administration than CCl4 treated group. These results suggest that Angelica keiskei Koidz green juice is believed to have a possible protective effect for the carbon tetrachloride-induced hepatotoxicity in rats.

  • PDF

Protective Effect of Sasa Quelpaertensis and p-Coumaric Acid on Ethanol-induced Hepatotoxicity in Mice

  • Lee, Sang-Il;An, Sang-Mi;Mun, Gyeong-In;Lee, Seung-Jin;Park, Kwon-Moo;Park, Sun-Hong;Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.148-154
    • /
    • 2008
  • Excessive alcohol use causes oxidative stress in the liver, and antioxidant therapy has been an attractive approach for the treatment of ethanol-induced liver damage. The present study examined the hepatoprotective effect of Sasa quelpaertensis Nakai (Korean name, Jeju-Joritdae) in C57BL/6 mice intoxicated with ethanol. Mice were intraperitoneally administered with ethanol alone, or together with test materials three times at 12-h intervals. At 3 h after the last dosing, hepatotoxicity was assessed based on serum activities of aspartate aminotransferase and alanine aminotransferase, and hepatic contents of thiobarbituric acid-reactive substances and glutathione. Sasa quelpaertensis extract mitigated the acute ethanol hepatotoxicity as effectively as silymarin. Its n-butanol fraction was more active than methylene chloride or aqueous fraction. p-Coumaric acid, a major constituent of S. quelpaertensis, was found to effectively prevent the ethanol-induced hepatotoxicity. These data suggest that S. quelpaertensis and p-coumaric acid could be useful for the prevention of liver disease caused by alcohol abuse.

Effect of SAL5 on chronic ethanol-induced fatty liver model (흰쥐에서 SAL5의 알코올성 지방간 형성에 미치는 영향)

  • Kim, Bok-Kyu;Yang, Won-Kyung;Park, Yang-Chun;Jung, Ga-Young;Shin, Eun-Ju;Do, Seon-Gil;Kim, Seung-Hyung
    • The Korea Journal of Herbology
    • /
    • v.33 no.1
    • /
    • pp.17-26
    • /
    • 2018
  • Objective : In this study, we investigated the effect of SAL5(mixing extracts of Schisandra chinensis Baillon, Artemisia capillaris Thunb., and Aloe vera Linne) on chronic ethanol-induced fatty liver model. Methods : Sprague-Dawley male rats were fed Liber-DeCarli (normal), ethanol liquid diet (control), SAL5 (200 mg/kg). We administrated the SAL5 on chronic ethanol-induced fatty liver model for 5 weeks. We measured alkaline phosphtase (ALP), alanine transminase (ALT), aspartate transminase (AST) and ${\gamma}-glutamyl$ transpeptase (${\gamma}-GTP$) in serum and triglyceride (TG), superoxide dismutase (SOD), catalase, glutathione (GSH) and malondialdehyde (MDA) level in liver. Liver histopathology was examined by Hematoxylin-eosin and Oil red O staining of the fixed liver tissues. Real-time PCR was performed to measure the mRNA expression of inflammatory cytokines and MMP-2, MMP-9. Results : SAL5 administration resulted in significantly decreased liver marker enzymes activities of alanine transminase (ALT), ${\gamma}-glutamyl$ transpeptase (${\gamma}-GTP$) in serum and triglyceride (TG) activities in liver. The control group decreased the activities of superoxide dismutase (SOD), catalase (CAT) with the reduced level of glutathione (GSH) in liver. On the other hand, SAL5 group increased the activities of SOD, CAT and the level of GSH. SAL5 delayed the development of an alcoholic fatty liver by reversing fat accumulation in the liver, as evidenced in histological observations. The gene expression of mRNA were significantly decreased at the $IL-1{\beta}$, $TNF-{\alpha}$, NOS-II and MMP-2 by SAL5. Conclusions : These results indicate that SAL5 might have protective effect chronic ethanol-induced fatty liver models.

Protective Effects of Nypa fruticans Wurmb against Oxidative DNA Damage and UVB-induced DNA Damage

  • So-Yeon Han;Tae-Won Jang;Da-Yoon Lee;Seo-Yoon Park;Woo-Jin Oh;Se Chul Hong;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.54-54
    • /
    • 2023
  • Nypa fruticans Wurmb (N. fruticans) is a plant that belongs to Araceae and N. fruticans is mainly found in tropical mangrove systems. The parts (leaves, stems, and roots) of N. fruticans are traditionally used for asthma, sore throat, and liver disease. N. fruticans contains flavonoids and polyphenols, which are substances that have inhibitory effects on cancer and oxidant. In previous studies, some pharmaceutical effects of N. fruticans on melanogenesis and inflammation have been reported. The present study is conducted to investigate the effect of the ethyl acetate fraction of N. fruticans (ENF) on oxidative DNA damage and UVB-induced DNA damage. DNA damage response (DDR) pathway is important in research on cancer, apoptosis, and so on. DDR pathways are considered a crucial factor affecting the alleviation of cellular damage. ENF could reduce oxidative DNA damage derived from reactive oxygen species by the Fenton reaction. Also, ENF reduced the intensity of intracellular ROS in the live cell image by DCFDA assay. UVB is known to cause skin and cellular damage, then finally contribute to causing the formation of tumors. As for the strategies of reducing DNA damage by UVB, inhibition of p53, H2AX, and Chk2 can be important indexes to protect the human body from DNA damage. As a result of confirming the protective effect of ENF for UVB damage, MMPs significantly decreased, and the expression of apoptosis-related factors tended to decrease. In conclusion, ENF can provide protective effects against double-stranded DNA break (DSB) caused by oxidative DNA damage and UVB-induced DNA damage. These results are considered to be closely related to the protective effect against radicals based on catechin, epicatechin, and isoquercitrin contained in ENF. Based on these results, it is thought that additional mechanism studies for inhibiting cell damage are needed.

  • PDF

Effect of Mungbean Sprouts Juice on Cadmium-Induced Hepatotoxicity in Rats (녹두나물 생즙이 카드뮴에 의한 흰쥐의 간손상에 미치는 영향)

  • 이명렬;최인화;김성오;김경수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.980-986
    • /
    • 1998
  • The effects of mungbean sprout juice on cadmium-induced hepatotoxicity in rats were investigated. Sprague-Dawley rats weighing about 90g were divided into 4 groups and raised for 6 weeks. ; control group(CON), mungbean sprouts juice-administered group(MSJ), cadmium-administered group(CAD) fed water containing 40 ppm cadmium chloride and mung bean sprouts juice and cadmium-administered group(MCD). The diet was supplied every day for the measurement of feed efficiency ratio(FER) and net weight gain was measured every 3 days. The activities of serum glutamic oxaloactic transaminase(GOT) and glutamic pyruvic transaminase(GPT), superoxide dimutase(SOD), catalase and glutathione peroxidase(GSH-Px) in the liver and the hepatic contents of glutathione were examined. The contents of Cd in liver and kidney of the rats were determined by using ICP(Inductively Coupled Plasma Emission Spectrophotometer). Growth rate and FER were decreased in CAD group, compared with CON group but the changes were not significant in MCD group. The activities of serum GOT and GPT, SOD, catalase and GSH-Px in the liver were increased by Cd administration, but the alterations were decreased by supplementation with mungbean sprouts juice. The level of glutathione decreased in CAD group(26.8$\pm$9.0mg/g liver), whereas it increased in MCD group(36.4$\pm$15.8mg gliver). The content of Cd in the liver and kidney in MCD group(9.57 ppm, 4.88 ppm) was decreased, compared with CAD group(12.81 ppm, 5.46 ppm). This result suggested that mungbean sprout juice has a lowering effect on the accumulation of Cd in the liver and kidney and it is believed that the juice has some protective effects to Cd-induced hepatotoxicity in rats, but the mechanism of these effects was obscure.

  • PDF

The Hepatoprotective Effect of Acanthopanax senticosus Fermentation Products in Fatty Liver Model (지방간 모델에서 가시오가피 발효물의 간 기능 개선 효과)

  • Cho, Ju-Hyun;Park, In-Jae;Choi, Soo-Young;Baik, Soon-Ok;Kim, Choong-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.40-46
    • /
    • 2014
  • We demonstrated that Acanthopanax senticosus fermentation products (FM-5111 and FM-5131) administered to rats functionally protect against DL-ethionine-induced and ethanol-induced fatty liver models. In DL-ethionine-induced fatty liver models, the serum concentrations of aspartate aminotransferase (AST), as well as liver concentrations of triglyceride and total lipid against the control decreased in FM-5111 and FM-5131 treated rats. In ethanol-induced fatty liver models, FM-5111 and FM-5131 treated rats showed a decrease in the liver concentrations of triglyceride and total lipid in ethanol-induced fatty liver models. There were no significant differences in the serum concentrations of AST and alanine aminotransferase in FM-5111 and FM-5131 treated rats. Additionally, FM-5111-, or FM-5131-treated rats showed no significant differences in the body weight gain between the control. These results indicate that Acanthopanax senticosus fermentation products might have protective effects against DL-ethionine-induced and ethanol-induced fatty liver models.

Effect of High-Intensity Interval Training on Acute Liver Failure Induced by D-Galactosamine/Lipopolysaccharide in Balb/c Mice (고강도 인터벌 트레이닝이 D-Gal/LPS로 유도된 마우스의 급성 간 부전에 미치는 효과)

  • Cho, Jin-Kyung;Park, Soo-Hyun;Kang, Hyun-Sik
    • Exercise Science
    • /
    • v.26 no.3
    • /
    • pp.223-228
    • /
    • 2017
  • PURPOSE: This study investigated the protective role of high-intensity interval training against acute liver injury induced by D-galactosamine (D-Gal)/lipopolysaccharide (LPS). METHODS: A total of 30 male BALB/c mice aged 5-week were randomly assigned to high-intensity, interval training group (EX, n=10) or control group in cage (Non-EX, n=20) for 10 weeks. Peritoneal injection of D-Gal (700 mg/kg body weight) and LPS ($10{\mu}g/kg$ body weight) was applied to induce acute liver injury, and liver tissue was harvested 6 hours after the injection. Hematoxylin and Eosin (H&E) staining was used for liver histology. Real-time PCR was used to quantify expression of pro-inflammatory and anti-inflammatory genes in the liver. RESULTS: The liver histology showed that D-Gal/LPS treatment resulted in hepatic damage and increased number of neutrophils in conjunction with upregulation of hepatic IL-6 and $TNF-{\alpha}$ mRNAs and downregulation of hepatic $PPAR{\alpha}$ and SIRT1 mRNAs. On the other hand, the 10-week interval training resulted in a significant improvement in cardiorespiratory fitness assessed as run time to exhaustion on a treadmill. In addition, the interval training attenuated the D-Gal/LPS-induced liver damage and increased number of neutrophil in conjunction with downregulation of hepatic IL-6 and $TNF-{\alpha}$ mRNAs and upregulation of hepatic $PPAR{\alpha}$ and SIRT1 mRNAs. CONCLUSIONS: This study suggests that high-intensity interval training suppresses the D-Gal and LPS-induced acute liver damage and inflammatory responses.

The Effect of Jininwhachul-tang-ga-wasong on the Hepatic Cancer in Mouse by N-Nitrosodiethylamine (진인화철탕가와송(眞人化鐵湯加瓦松)이 N-Nitrosodiethylamine으로 유발된 흰쥐의 간암에 미치는 영향)

  • Lim, Dong-Seok;Choi, Chang-Won
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.582-594
    • /
    • 2008
  • Objective : The purpose of our study was to investigate the effect of JinlnWhaChul-tang-ga-wasong (JIN) on NDEA-induced liver tumorigenesis. Materials and Methods : We investigated the possible protective effects of Jininwhachul-tang-ga-wasong (JIN) as an anticancer against NDEA-induced liver injury in mice. Experimental mice were classified into 3 groups; normal, saline administered group (control group), and JIN extract (0.15g/kg/every other day) administered group (JIN group) after being injected with NDEA over 12 weeks. We examined the state of differentiation of these tumors and the effects of JIN after 6 weeks. To confirm the induction of apoptosis, the cells were analyzed by terminal deorynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, acridine orange staining and flow cytometric analysis. To investigate inhibitory effect on the expression of COX-2 by JIN, we performed COX-2 immunohistochemistry and reverse transcription polymerase chain reaction analysis. Results : Body weights significantly decreased in the control and JIN groups compared with the normal group. The levels of cholesterol, hemoglobin and testosterone decreased in the control compared with the normal group. The level of estradiol significantly increased in the control compared with the normal group. The control group reacted with TUNEL assay more than the normal and JIN groups. Upon naked eye, light and electron microscopic examination, JIN improved the morphological and histopathological changes of the liver caused by NDEA-induced hepatic neoplasm. COX-2 immunoreactivity decreased in the JIN group compared with the control group, mRNA expression of the control group was greater than the normal and JIN groups. Conclusion : these results suggest the possibility that JIN may exert an anti-tumor effect on NDEA-induced liver tumorigenesis.

  • PDF

Effects of red ginseng total saponin on Menadione-induced hepatotoxicity in the rat (Menadione에 의해 유발된 간독성에 미치는 홍삼사포닌의 영향)

  • Jang, Bong-jun;Bae, Chun-sik;Cho, Yong-seong;Cha, Yong-ho;Park, Chang-won;Cho, Tae-hyun;Chang, Kyung-jin
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.619-627
    • /
    • 1997
  • It is known that 2-methyl-1,4-naphtoquinone(menadione, MD) induces hepatotoxicities both in vivo and in vitro. These toxic effects are believed to result from oxidative damages to hepatocytes by "active oxygen" species via one-electron reduction of the naphtoquinone. The ginsenoside(GS) is a complex mixture of individual ginsenosides which is known to produce a range of effects on the cardiovascular and central nervous systems. In particular, GS has an antioxidant effect. In this experiment we studied the effect of GS from red panax ginseng(red ginseng total saponin, RGTS) on free radical-induced liver injuries by MD. Administration of MD($150{\mu}M$) caused an increase in aspartate aminotransferase(AST) activities and lipid peroxidation, decrease in alkaline phosphatase(ALP) activities and total bilirubin levels in blood, caused depletion of GSH and changes of antioxidant enzyme(superoxide dismutase, catalase) activities are shown in liver tissue. Administration of RGTS restored the AST levels that increased by MD, but catalase showed no significant changes. RGTS also had an effect of restoring the GSH level and had some synergistic effects with SOD. These data suggest that RGTS may have some protective effects on liver injury which is related with the oxygen free radical.

  • PDF