• Title/Summary/Keyword: liver oxidative stress

Search Result 504, Processing Time 0.024 seconds

Effects of Wolguk-whan Water Extract on Acute Oxidative Liver Injury Induced by Acetaminophen (월국환(越鞠丸) 물 추출물이 Acetaminophen으로 유도된 마우스의 급성 간손상에 미치는 효과)

  • Lee Chae-Jung;Park Sun-Dong;Moon Jin-Young
    • Herbal Formula Science
    • /
    • v.11 no.2
    • /
    • pp.135-146
    • /
    • 2003
  • Objectives : Wolguk-whan has been used as a prescription of natural drug for the treatment of stress digestive system disease. Recently, we reported that Wolguk-whan methnol extract (WGWM) exerted a significant protective effect against oxidative damage to the liver of ICR mice. This study was purposed to investigate the effects of Wolguk-whan water extract (WGWW) on liver injury induced by oxidative stress. Methods : In order to investigate the effects of WGWW on acute liver injury, ICR mice were pretreated with WGWW for 6days, starved for 24hrs, and administerated acetamirtophen(500mg/kg, i.p.). In the liver homogenates, lipid peroxide and glutathione(GSH) levels were measured. In addition, activities of hepatic enzyme, such as catalase, glutathione peroxidase(GSH-Px), glutathione S-transferase(GST) were measured in the hepatic mitochondrial and cytosolic fractions. Results : In vivo administeration of WGWW showed effective inhibition of acetaminophen induced lipid peroxidation, and showed elevations of GSH level, catalase, GSH-Px, GST activities. Conclusions : These results suggested that WGWW might suppress the formation of oxidative metabolites, and prevent acetaminophen induced hepatotoxicity.

  • PDF

Hepatoprotective Effect of Stamen Extracts of Mesua ferrea L. against Oxidative Stress induced by $CCl_4$ in Liver Slice Culture Model

  • Rajopadhye, Anagha A.;Upadhye, Anuradha S.
    • Natural Product Sciences
    • /
    • v.18 no.2
    • /
    • pp.76-82
    • /
    • 2012
  • Stamens of Mesua ferrea L. are a well-known herbal drug used in Indian System of Traditional Medicine to treat various diseases. The claimed activity of this plant part is necessitated to investigate antioxidant and hepatoprotective activity. Authenticated plant sample was extracted with hexane, ethanol (EtOH) and water (aq.) using ASE 100 accelerated solvent extractor. Antioxidant activity was evaluated by means of different in vitro assays. Hepatoprotective effect was investigated on carbon tetrachloride induced oxidative stress in liver slice culture model. Cytotoxic marker lactate dehydrogenase (LDH) released in culture medium and the activity of lipid peroxidation along with antioxidant enzymes (AOEs) namely superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were estimated. Hexane and EtOH extracts were significantly inhibited DPPH, NO, SOD and $ABTS^+$ radical in dose dependent manner. The trade of phenol content was: aq. extract < hexane extract < EtOH extract. A significant correlation was shown by total phenol content and free radical scavenging activity of extracts. The culture system treated with hexane extract, EtOH extract or ascorbic acid exhibited significant depletion in LDH, lipid peroxidation, antioxidative enzymes SOD, CAT and GR. Hexane extract and EtOH extracts of stamen of M. ferrea protected liver slice culture cells by alleviating oxidative stress induced damage to liver cells.

Effects of acute dibutyl phthalate administration on hepatic lipid peroxidation and gamma-glutamyl transferase activity in mice (마우스에서 dibutyl phthalate 급성 투여가 간 지질과산화와 gamma-glutamyl transferase 활성에 미치는 효과)

  • 최달웅;김영환
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2004
  • Dibutyl phthalate (DBP) is used extensively in the plastic industry and has been known as an endocrine disruptor. Present study was undertaken to examine whether DBP can induce oxidative stress in mice. In this study, oxidative stress was measured in terms of the modification of lipid peroxidation and gamma-glutamyl transferase (GGT) activity. The serum toxicity index, level of lipid peroxidation and triglyceride (TG), and activity of GGT were measured in male ICR mice after a single administration of DBP (5 g/kg, po). DBP did not alter serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, glucose and cholesterol level. However, the treatment with DBP was found to significantly increase the level of lipid peroxidation in liver and lung. The TG content and activity of GGT in the liver of DBP-exposed animals was also increased. These results indicate that DBP can induce mild oxidative stress in mice. The GGT activity is considered to be increased as one of the adaptive defense mechanisms to oxidative stress induced by DBP.

Effects of Silkworm (Bombyx mori L.) Powder on Oxidative Stress and Membrane Fluidity in Liver of SD Rats (간장의 산화적 스트레스 및 세포막 유동성에 미치는 누에분말의 영향)

  • 최진호;김대익;박수현;김정민;조원기;이희삼;류강선
    • Journal of Life Science
    • /
    • v.10 no.5
    • /
    • pp.496-503
    • /
    • 2000
  • This study was designed to investigate the effects of silkworm (Bombyx mori L.) powder on oxidative stress and membrane fluidity in liver membranes of rats. Sprague-Dawley (SD) male rats (160±10 g) were fed basic diet (control group), and experimental diets (SWP-200 and SWP-400 groups) added 200 and 400 mg/kg BW/day for 6 weeks. A significant differences between liver mitochondria and microsomes of SWP-200 and SWP-400 groups could not be obtained. Membrane fluidities were dose-dependently increased (14.8% and 28.5%, 20.0% and 29.9%) in liver mitochondria and microsomes of SWP-200 and SWP-400 groups compared with control group. Basal oxygen radicals (BOR) in liver mitochondria and mocrosomes were significantly inhibited (15.2% and 21.7%, 12.6% and 18.6%, respectively) by SWP-200 and SWP-400 groups compared with control group. Induced oxygen radicals (IOR) in liver microsomes were significantly inhibited (15.5% and 16.1%, respectively) by SWP-200 and SWP-400 groups compared with control group, but IOR in liver mitochondria was significantly inhibited about 12.0% by SWP-400 group only compared with control group. Lipid peroxide (LPO) levels were significantly decreased (14.4% and 9.1%, respectively) in liver mitochondria and microsomes of SWP-400 group only compared with control group. Oxidized protein (OP) levels were remarkably decreased about 12.7% and 16.3% in liver microsomes only of SWP-200 and SWP-400 groups, but significant difference between liver motochondria could not obtained. These results suggest that administration of SWP may play an effective role in a attenuating a oxidative stress and increasing a membrane fluidity in liver membranes.

  • PDF

Experimental Study of Chungganhaeju-tang (Qingganjiejiu-tang) on Oxidative Stress (청간해주탕(淸肝解酒湯)의 항산화 작용에 관한 실험적 연구)

  • Lee, Ji-Eun;Lee, Jang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.2
    • /
    • pp.188-202
    • /
    • 2011
  • Objectives : Oxidative stress seems to play a major role in mechanisms by which ethanol causes liver injury. Previous studies have shown that treatment with Chungganhaeju-tang (Qingganjiejiu-tang, CGHJT) has protective effects on alcoholic liver disease. The aim of this study was to investigate the effects of Chungganhaeju-tang on oxidative stress. Materials and Methods : In vitro, we evaluated the inhibitory activities of CGHJT on DPPH (1,1-diphenyl-2-picryl-hydrazyl), xanthine oxidase, trypsin, and hyaluronidase, and measured cell viability, and proliferation. In the cell culture model, we measured the activities of superoxide dismutase (SOD), and catalase (CAT) after CGHJT treatment in C34 and E47 cell lines, HepG2 cells transfected with/without the cytochrome P450 2E1 (CYP2E1) gene. In vivo, we measured malondialdehyde levels in the liver tissue and alcohol concentration in the blood. Results : CGHJT showed significant free radical scavenging activity against DPPH and xanthine oxidase in the in vitro study, and increased cell viability, proliferation, and activities of superoxide dismutase, catalase in C34 and in E47 cell lines. CGHJT reduced malondialdehyde levels and blood alcohol concentration in vivo, as well. Conclusions : This study suggests that CGHJT has antioxidant effects on oxidative stress by reducing lipid peroxidation and inhibiting the ethanol induced suppression of antioxidant enzyme activities.

A Study on the Anti-oxidative Activities of Rhodiola rosea Root (Rhodiola rosea Root의 항산화(抗酸化) 효능에 대한 연구)

  • Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.91-98
    • /
    • 2012
  • Objectives : Rhodiola rosea L. (Crassulaceae) is a plant living at the areas of high-altitude mountain, and Rhodiolae Radix(the root of R. rosea) has been used as a traditional medicine to decrease the symptoms of mental- or physical-stress in Asia and Europe. To examine the efficacy of Rhodiolae Radix on the oxidative stress, the anti-oxidative effects of the radix were examined, Methods : The effects of Rhodiolae Radix on several oxidative factors were examined in vitro, and also the effects were tested in the liver of rats which were treated with a high dose of alcohol during 2 weeks. Results : The extract of Rhodiolae Radix in vitro scavenged some oxidants, such as DPPH, Superoxide anion radical and LDL, and the extract also inhibited the oxidative capacity of linoleic acid, significantly. Meanwhile, in the in vivo test, the methanol-extract decreased some oxidation parameters, such as relative liver weight, TBARS and SOD activities, and also increased catalase activity in the liver of alcohol-loaded rats, But, the extract had no effects on GSH content and GSH-px activiy in the rats. Conclusion : The root of Rhodiola rosea has a strong anti-oxidative capacity, and also has some preventive properties aginst the alcoholic stress.

Effect of Polygoni Multiflori Ramulus extract against arachidonic acid and iron-induced oxidative stress in HepG2 cell and CCl4-induced liver injury in mice (야교등의 항산화 및 간보호효과)

  • Jeon, Chang Kwon;Jung, Ji Yun;Park, Chung A;Jee, Seon Young;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.155-166
    • /
    • 2017
  • Objectives : Polygoni Multiflori Ramulus has been widely used as a traditional medicinal herb for the treatment of insomnia, limb pain and itch. The extract of Polygoni Multiflori Ramulus (PMRE) is known to have a modulatory effect of many inflammatory responses. This study was performed to investigate the hepatoprotective effect of PMRE against arachidonic acid (AA) + iron-induced oxidative stress on HepG2 cell and carbon tetrachloride ($CCl_4$)-induced liver injury on mice. Methods : The effects of PMRE on cell viability was assessed by MTT assay. And flow cytometric analysis was performed to estimate the effects on mitochondrial function. To investigate its underlying mechanism, apoptosis-related proteins were analysed by using immunoblot analysis. In addition, ICR mouse were administrated (po) with the PMRE (30, 100 mg/kg) for 3 days and then, injected (ip) with $CCl_4$ (0.5 ml/kg body weight) to induce acute liver damage. The level of pro-caspase-3 was measured. Results : Treatment of PMRE increased relative cell viability, prevented a cleavage of poly (ADP ribose) polymerase and pro-caspase-3, and also reduced mitochondrial membrane permeability against AA + iron-induced oxidative stress. In addition, PMRE treatment decreased liver injury induced by $CCl_4$, as evidenced by increases in pro-caspase-3 level. Conclusions : These results demonstrate that PMRE has an ability to anti-oxidant and hepatoprotective effect against AA + iron-induced oxidative stress and $CCl_4$-induced liver injury.

Effects of vitamin C and E supplementation on oxidative stress and liver toxicity in rats fed a low-fat ethanol diet

  • Lee, Soo-Jung;Kim, Seon-Young;Min, Hyesun
    • Nutrition Research and Practice
    • /
    • v.7 no.2
    • /
    • pp.109-114
    • /
    • 2013
  • We compared the preventive capacity of high intakes of vitamin C (VC) and vitamin E (VE) on oxidative stress and liver toxicity in rats fed a low-fat ethanol diet. Thirty-two Wistar rats received the low fat (10% of total calories) Lieber-DeCarli liquid diet as follows: either ethanol alone (Alc group, 36% of total calories) or ethanol in combination with VC (Alc + VC group, 40 mg VC/100 g body weight) or VE (Alc + VE group, 0.8 mg VE/100 g body weight). Control rats were pair-fed a liquid diet with the Alc group. Ethanol administration induced a modest increase in alanine aminotransferase (ALT), aspartate aminotransferase (AST), conjugated dienes (CD), and triglycerides but decreased total radical-trapping antioxidant potential (TRAP) in plasma. VE supplementation to alcohol-fed rats restored the plasma levels of AST, CD, and TRAP to control levels. However, VC supplementation did not significantly influence plasma ALT, AST, or CD. In addition, a significant increase in plasma aminothiols such as homocysteine and cysteine was observed in the Alc group, but cysteinylglycine and glutathione (GSH) did not change by ethanol feeding. Supplementing alcohol-fed rats with VC increased plasma GSH and hepatic S-adenosylmethionine, but plasma levels of aminothiols, except GSH, were not influenced by either VC or VE supplementation in ethanol-fed rats. These results indicate that a low-fat ethanol diet induces oxidative stress and consequent liver toxicity similar to a high-fat ethanol diet and that VE supplementation has a protective effect on ethanol-induced oxidative stress and liver toxicity.

Antioxidant effects of kimchi supplemented with black raspberry during fermentation protect against liver cirrhosis-induced oxidative stress in rats

  • Ryu, Eun-Hye;Yang, Ji-Su;Lee, Min-Jung;Kim, Sung Hyun;Seo, Hye-Young;Jung, Ji-Hye
    • Nutrition Research and Practice
    • /
    • v.13 no.2
    • /
    • pp.87-94
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Oxidative stress is a major effector of various diseases; accordingly, antioxidants are frequently ingested in order to prevent or alleviate disease symptoms. Kimchi contains various natural antioxidants, and it is known that the functional activity varies depending on the ingredients and fermentation state. Black raspberries (BR) contain various bioactive compounds with antioxidant effects. This study investigated the antioxidant and liver-protection effects of kimchi supplemented with black raspberry juice powder (BJP). MATERIALS/METHODS: BJP-added kimchi (BAK; at 0.5%, 1%, and 2% concentrations of BJP) and control (without BJP) were prepared and fermented at $4^{\circ}C$ for 4 weeks. Changes in the antioxidant effects of BAK during fermentation were investigated. In addition, the protective activity of BAK against oxidative stress was investigated in a liver cirrhosis-induced animal model in vivo. RESULTS: BAK groups showed the acidity and pH of optimally ripened (OR) kimchi at 2 weeks of fermentation along with the highest lactic acid bacterial counts. Additionally, BAK groups displayed a higher content of phenolic compounds and elevated antioxidant activities relative to the control, with the highest antioxidant effect observed at 2 weeks of fermentation of OR 1% BAK. After feeding the OR 1% BAK to thioacetamide-induced liver cirrhosis rats, we observed decreased glutamate oxaloacetate transaminase and glutamate pyruvate transaminase activities and elevated superoxide dismutase activity. CONCLUSIONS: These findings showed that the antioxidant effects of OR BAK and feeding of OR 1% BAK resulted in liver-protective effects against oxidative stress.

Liver Dysfunction and Oxidative Stress in Streptozotocin-Induced Diabetic Rats: Protective Role of Artemisia Turanica

  • Yazdi, Hassan Bgheri;Hojati, Vida;Shiravi, Abdolhossein;Hosseinian, Sara;Vaezi, Gholamhassan;Hadjzadeh, Mousa-Al-Reza
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.109-114
    • /
    • 2019
  • Objectives: Oxidative stress plays a central role in diabetes-induced complications. In the present study, the protevtive effect of Artemisia turanica (A. turanica) was evaluated against diabetes-induced liver oxidative stress and dysfunction. Methods: Fifty male Wistar rats were randomly divided into five groups: control, diabetic, diabetic + metformin, diabetic + A. turanica extract, and diabetic + A. turanica extract + metformin. Experimental diabetes was induced by a single-dose (55 mg/kg, intraperitoneally (ip)) injection of streptozotocin (STZ). Metformin (300 mg/kg) and A. turanica extract (70 mg/kg) were orally administrated three days after STZ injection for four weeks. The levels of malondialdehyde (MDA), total thiol content and superoxide dismutase (SOD) and catalase activities were measured in the liver tissue. Serum glucose concentration, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were also determined. Results: In the diabetic group, serum glucose concentration, serum AST and ALT activities and liver MDA level were significantly higher while tissue total thiol content as well as catalase and SOD activities were lower, compared to the control group. Serum glucose in diabetic rats treated with metformin + A. turanica extract showed a significant decrease compared with the diabetic group. In all the A. turanica extract and metformin treated groups, serum ALT, tissue MDA level, total thiol content and SOD activity significantly improved compared with the diabetic rats. However, treatment of the diabetic rats only with metformin could not significantly change the activities of catalase and AST compared with the diabetic group. Conclusion: These findings suggested that A. turanica extract had a therapeutic effect on liver dysfuncyion and oxidative stress induced by diabetes, that may be probably due to its antioxidant and antiinflammatory effects.