• 제목/요약/키워드: liver enzyme activity

검색결과 713건 처리시간 0.029초

Cytochrome P-450 3A4 proximal promoter activity by histone deacetylase inhibitor in HepG2 cell.

  • Kim, Ja-Young;Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.88-88
    • /
    • 2003
  • Cytochrome P-450 3A4 (CYP3A4) is major enzyme in human liver, the role of this is detoxification and metabolizing more than 50% clinical drugs in use. Expression of CYP3A4 is transciptionally regulated by the Pregnenolone X receptor (PXR), of which human form is Steroid and Xenobiotics receptor (SXR). SXR is activated by wide range of endogenous and exogenous compounds, and then induces CYP3A4 gene expression. In the previous study, it has been known that proximal promoter (-864 to +64) does not response to chemical inducers such as pregnenolone 16a-carbonitrile (PCN), Rifampicin, Estrogen in terms of transcription of CYP 3A4 in cultured cells. Here, we developed luciferase reporter gene assay system to detect SXR-based CYP 3A4 transcriptional activity. We have used CYP3A4-Luc plasmid that contains proximal promoter of human CYP3A4 gene upstream of the luciferase gene. We did transient transfection of 3A4-luciferase gene and SXR. In the HepG2 cells transfected with CYP3A4-Luc, when rifampicin treatment was combined with histone deacetylase inhibitor (HDAC Inhibitor), such as Trichostatin A, Hc-toxin and IN 2001 of the luciferase activity was induced 10-20 fold over control.

  • PDF

Cytochrome P-450 3A4 proximal promoter activity by histone deacetylase inhibitor in HepG2 cell.

  • Kim, Ja-Young;Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.178-178
    • /
    • 2003
  • Cytochrome P-450 3A4 (CYP3A4) is major enzyme in human liver, the role of this Is detoxification and metabolizing more than 50% clinical drugs in use. Expression of CYP3A4 is transciptionally regulated by the Pregnenolone X receptor (PXR), of which human form is Steroid and Xenobiotics receptor (SXR). SXR is activated by wide range of endogenous and exogenous compounds, and then induces CYP3A4 gene expression. In the previous study, it has been known that proximal promoter (-864 to +64) does not response to chemical inducers such as pregnenolone 16a-carbonitrile (PCN), Rifampicin, Estrogen in terms of transcription of CYP 3A4 in cultured cells. Here, we developed luciferase reporter gene assay system to detect SXR-based CYP 3A4 transcriptional activity. We have used CYP3A4-Luc plasmid that contains proximal promoter of human CYP3A4 gene upstream of the luciferase gene. We did transient transfection of 3A4-luciferase gene and SXR. In the HepG2 cells transfected with CYP3A4-Luc, when rifampicin treatment was combined with histone deacetylase inhibitor (HDAC Inhibitor), such as Trichostatin A, Hc-toxin and IN 2001 of the luciferase activity was induced 10-20 fold over control.

  • PDF

Biphenyldimethyl dicarboxylate(DDB)가 염화 제2수은-유발 간독성 흰쥐에서의 지질 과산화와 Oxygen Free Radical 제거효소 활성도에 미치는 영향 (Effects of Biphenyldimethyl Dicarboxylate(DDB) on the Lipid Peroxidation and Oxygen Free Radical Scavenging Enzyme Activities in Mercuric Chloride-induced Hepntotoxic Rats)

  • 신인철;고현철
    • Biomolecules & Therapeutics
    • /
    • 제3권3호
    • /
    • pp.223-228
    • /
    • 1995
  • In an attempt to define the effects of biphenyldimethyl dicarboxylate (DDB) on the lipid peroxidation and oxygen free radical scavenging enzymes activities in mercuric chloride-induced hepatotoxic rats, we studied malondialdehyde (MDA) level and the activities of catalase and superoxide dismutase (SOD) in liver of the rats at 24 hr after the injection of mercuric chloride. Sprague-Dalwey albino rats were injected subcutaneously with mercuric chloride (5 mg/kg) only and mercuric chloride (5 mg/kg) plus. DDB (200 mg/kg/day, p.o) is administered for 4 days prior to 3 days from the injection of mercuric chloride. The group treated with mercuric chloride showed significantly higher MDA level and lower catalase and SOD activities as compared with that of control group. The group treated with mercuric chloride plus DDB showed significantly lower MDA level and catalase activity and higher SOD activity as compared with that of mercuric chloride-treated group. These results suggest that the excessive oxygen free radicals resulting from the depression of superoxide dismutase activity is an important determinant in the pathogenesis of mercuric chloride-induced hepatotoxicity and DDB has antioxidant effects.

  • PDF

Lactobacillus acidophilus NS1 Reduces Phosphoenolpyruvate Carboxylase Expression by Regulating HNF4α Transcriptional Activity

  • Park, Sung-Soo;Yang, Garam;Kim, Eungseok
    • 한국축산식품학회지
    • /
    • 제37권4호
    • /
    • pp.529-534
    • /
    • 2017
  • Probiotics have been known to reduce high-fat diet (HFD)-induced metabolic diseases, such as obesity, insulin resistance, and type 2 diabetes. We recently observed that Lactobacillus acidophilus NS1 (LNS1), distinctly suppresses increase of blood glucose levels and insulin resistance in HFD-fed mice. In the present study, we demonstrated that oral administration of LNS1 with HFD feeding to mice significantly reduces hepatic expression of phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme in gluconeogenesis which is highly increased by HFD feeding. This suppressive effect of LNS1 on hepatic expression of PEPCK was further confirmed in HepG2 cells by treatment of LNS1 conditioned media (LNS1-CM). LNS1-CM strongly and specifically inhibited $HNF4{\alpha}-induced$ PEPCK promoter activity in HepG2 cells without change of $HNF4{\alpha}$ mRNA levels. Together, these data demonstrate that LNS1 suppresses PEPCK expression in the liver by regulating $HNF4{\alpha}$ transcriptional activity, implicating its role as a preventive or therapeutic approach for metabolic diseases.

모유의 항산화능에 관한 연구 (Study on the Antioxidative Activity of Human Milk)

  • 정해영;김정선;심경희;김명숙;김규원;이기영
    • 한국식품영양과학회지
    • /
    • 제24권5호
    • /
    • pp.651-657
    • /
    • 1995
  • 모유성분을 고분자분획(20KD 이상 분자)과 저분자분획(20KD 이하 분자)으로 나누어 항산화력을 검토한 결과, 고분자분획이 저분자분획 보다 더 강력한 항산화력을 나타내었다. 이 모유의 항산화력은 주로 20KD 이상에 존재하는 항산화 효소에 기인할 가능성이 시사되어 모유의 채유 기간에 따른 항산화 효소를 비롯하여 protein-SH와 nonprotein-SH를 검토한 결과, catatase는 7일째 현저히 저하한데 비해 GSH peroxidase, GSH S-transferase는 7일째를 전후로 현저히 증가한 후 감소하는 경향을 나타내었다. Protein-SH는 채유 기간에 따라 차츰 감소하였으나 nonprotein-SH는 20일째 peak를 이루고 그 후 감소하였다. 이상의 결과로 부터 모유의 고분자분획은 강력한 항산화력을 나타내었으며, 이 항산화력은 catalase, GSH peroxidase 및 GSH S-transferase 등의 항산화 효소 활성에 기인할 것으로 사료된다.

  • PDF

수종 지혈 한약물이 Cytochrome P450 3A4 활성에 미치는 영향 (Influence of Five Herbal Medicines on Cytochrome P450 3A4 Drug-Metabolizing Enzymes in Human Liver Microsomes)

  • 황진우;고재언;고호연;최유경;박종형;전찬용
    • 대한한방내과학회지
    • /
    • 제29권4호
    • /
    • pp.846-855
    • /
    • 2008
  • Objects : The aim of this study was to investigate the influence of five herbal medicines on cytochrome P450 3A4 drug-metabolizing enzymes in human liver microsomes. Methods : To use human liver microsomes, an extract of five herbal medicines, which are Artemisia princeps Pampan, Sophora jeponica Linne, Panax notoginseng F. H. Chen, Lithospermum Erythrorhizon Sieb., and Cirsium maackii Maxim, which together are called Jihyulyak(止血藥, drugs for arresting bleeding, hemostatics), was co-incubated and measured for relative enzyme activity in incubation condition compared to ketoconazole, a representative inhibitor of CYP 3A4. Results : We showed that all five of the traditional herbal medicines had no inhibition effect of CYP 3A4 at 10, 20, 30, 40, and $50{\mu}g/ml$ doses in human liver microsomes, although Sophora japonica Linne(SJL) showed a little inhibition at about 81% inhibition rate of control. However, this result is not enough to prove that SJL has a CYP 3A4 inhibition effect. Moreover, we can't make sure that those rates had significant induction effect on CYP 3A4. Conclusions : The result of this study could support that those herbal medicines are safer than chemical drugs, even if this is the basic step to prove that result.

  • PDF

Functional Expression of Saccharomyces cerevisiae NADH-quinone Oxidoreductase (NDI1) Gene in the AML12 Mouse Liver Hepatocytes for the Applying Embryonic Stem Cell

  • Seo, Byoung-Boo;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • 제35권4호
    • /
    • pp.427-434
    • /
    • 2011
  • Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber's hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.

Gene Expression Profiling of Doxifluridine Treated Liver, Small and Large Intestine in Cynomolgus (Macaca fascicularis) Monkeys

  • Jeong, Sun-Young;Park, Han-Jin;Oh, Jung-Hwa;Kim, Choong-Yong;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제3권2호
    • /
    • pp.137-144
    • /
    • 2007
  • The mechanism of cytotoxicity of doxifluridine, a prodrug fluorouracil (5-FU), has been ascribed to the misincorporation of fluoropyrimidine into RNA and DNA and to the inhibition of the nucleotide synthetic enzyme thymidylate synthase. Increased understanding of the mechanism of 5-FU has led to the development of strategies that increases its anticancer activity or predicts its sensitivity to patients. Using GeneChip?? Rhesus Macaque Genome arrays, we analyzed gene expression profiles of doxifluridine after two weeks repeated administration in cynomolgus monkey. Kegg pathway analysis suggested that cytoskeletal rearrangement and cell adhesion remodeling were commonly occurred in colon, jejunum, and liver. However, expression of genes encoding extracellular matrix was distinguished colon from others. In colon, COL6A2, COL18A1, ELN, and LAMA5 were over-expressed. In contrast, genes included in same category were down-regulated in jejunum and liver. Interestingly, MMP7 and TIMP1, the key enzymes responsible for ECM regulation, were overexpressed in colon. Several studies were reported that both gene reduced cell sensitivity to chemotherapy-induced apoptosis. Therefore, we suggest they have potential as target for modulation of 5-FU action. In addition, the expression of genes which have been previously known to involve in 5-FU pathway, were examined in three organs. Particularly, there were more remarkable changes in colon than in others. In colon, ECGF1, DYPD, TYMS, DHFR, FPGS, DUT, BCL2, BAX, and BAK1 except CAD were expressed in the direction that was good response to doxifluridine. These results may provide that colon is a prominent target of doxifluridine and transcriptional profiling is useful to find new targets affecting the response to the drug.

A Novel Homozygous LIPA Mutation in a Korean Child with Lysosomal Acid Lipase Deficiency

  • Kim, Kwang Yeon;Kim, Ju Whi;Lee, Kyung Jae;Park, Eunhyang;Kang, Gyeong Hoon;Choi, Young Hun;Kim, Woo Sun;Ko, Jung Min;Moon, Jin Soo;Ko, Jae Sung
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제20권4호
    • /
    • pp.263-267
    • /
    • 2017
  • Patients with lysosomal acid lipase (LAL) deficiency and glycogen storage disease (GSD) demonstrated hepatomegaly and dyslipidemia. In our case, a 6-year-old boy presented with hepatosplenomegaly. At 3 years of age, GSD had been diagnosed by liver biopsy at another hospital. He showed elevated serum liver enzymes and dyslipidemia. Liver biopsy revealed diffuse microvesicular fatty changes in hepatocytes, septal fibrosis and foamy macrophages. Ultrastructural examination demonstrated numerous lysosomes that contained lipid material and intracytoplasmic cholesterol clefts. A dried blood spot test revealed markedly decreased activity of LAL. LIPA gene sequencing identified the presence of a novel homozygous mutation (p.Thr177Ile). The patient's elevated liver enzymes and dyslipidemia improved with enzyme replacement therapy. This is the first report of a Korean child with LAL deficiency, and our findings suggest that this condition should be considered in the differential diagnosis of children with hepatosplenomegaly and dyslipidemia.

Efficacy of nobiletin in improving hypercholesterolemia and nonalcoholic fatty liver disease in high-cholesterol diet-fed mice

  • Kim, Young-Je;Yoon, Dae Seong;Jung, Un Ju
    • Nutrition Research and Practice
    • /
    • 제15권4호
    • /
    • pp.431-443
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Nobiletin (NOB), a citrus flavonoid, is reported to have beneficial effects on cardiovascular and metabolic health. However, there is limited research investigating the effect of long-term supplementation with low-dose NOB on high-cholesterol diet (HCD)-induced hypercholesterolemia and non-obese nonalcoholic fatty liver disease (NAFLD). Therefore, we investigated the influence of NOB on hypercholesterolemia and NAFLD in HCD-fed mice. SUBJECTS/METHODS: C57BL/6J mice were fed a normal diet (ND) or HCD (35 kcal% fat, 1.25% cholesterol, 0.5% cholic acid) with or without NOB (0.02%) for 20 weeks. RESULTS: HCD feeding markedly reduced the final body weight compared to ND feeding, with no apparent energy intake differences. NOB supplementation suppressed HCD-induced weight loss without altering energy intake. Moreover, NOB significantly decreased the total cholesterol (TC) levels and the low-density lipoprotein (LDL)/very-LDL-cholesterol to TC ratio, and increased the high-density lipoprotein-cholesterol/TC ratio in plasma, compared to those for HCD feeding alone. The plasma levels of inflammatory and atherosclerosis markers (C-reactive protein, oxidized LDL, interleukin [IL]-1β, IL-6, and plasminogen activator inhibitor-1) were significantly lower, whereas those of anti-atherogenic adiponectin and paraoxonase were higher in the NOB-supplemented group than in the HCD control group. Furthermore, NOB significantly decreased liver weight, hepatic cholesterol and triglyceride contents, and lipid droplet accumulation by inhibiting messenger RNA expression of hepatic genes and activity levels of cholesterol synthesis-, esterification-, and fatty acid synthesis-associated enzymes, concomitantly enhancing fatty acid oxidation-related gene expression and enzyme activities. Dietary NOB supplementation may protect against hypercholesterolemia and NAFLD via regulation of hepatic lipid metabolism in HCD-fed mice; these effects are associated with the amelioration of inflammation and reductions in the levels of atherosclerosis-associated cardiovascular markers. CONCLUSIONS: The present study suggests that NOB may serve as a potential therapeutic agent for the treatment of HCD-induced hypercholesterolemia and NAFLD.