• Title/Summary/Keyword: live load to dead load ratio

Search Result 17, Processing Time 0.019 seconds

Comparison between reinforced concrete designs based on the ACI 318 and BS 8110 codes

  • Tabsh, Sami W.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.467-477
    • /
    • 2013
  • Municipalities in the United Arab Emirates approve reinforced concrete design of building structures to follow either the ACI 318 or the BS 8110 code. Since the requirements of these codes are different from each, there is a need to compare the structural demand in the two codes. The main objective of this study is to compare the design requirements of the ACI 318 code with the BS 8110 code for the flexural, shear and axial compression limit states. The load factors and load combinations in the two codes are also compared. To do so, a large number of cross-sections with different geometries, material properties, and reinforcement ratios are analyzed following the procedures in the two codes. The relevant factored load combinations in the two codes are also investigated for a wide range of live-to-dead load ratios and for various wind-to-dead load ratios. The study showed that the differences between the design capacities in the ACI 318 and BS 8110 codes are minor for flexure, moderate for axial compression, and major for shear. Furthermore, the factored load combinations for dead load, live load and wind in the two codes yield minor-to-moderate differences, depending on the live-to-dead load ratio and intensity of wind.

Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.153-164
    • /
    • 2000
  • Numerical studies were carried out to investigate long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was developed. It can address creep and shrinkage as weel as geometrical and material nonlinearity, and also it can address various load combinations and loading sequences of transverse load, in-plane compressive load and time. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with four parameters; 1) loading sequence of floor load, compressive load and time 2) uniaxial and biaxial compression 3) the ratio of dead to live load 4) span length. Through the numerical studies, the behavioral characteristics of the flat plates and the governing load combinations were examined. These results will be used to develop a design procedure for the long-term behavior of flat plates in the future.

Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구)

  • 최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.611-616
    • /
    • 2000
  • Numerical studies were carried out to investigate the long-term behavior of late plates in basement, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was modified by adding function of creep and shrinkage analysis. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with three parameters; 1) loading sequence of floor load, compression and time 2) uniaxial an biaxial compression and 3) the ratio of dead to live load.

  • PDF

An improved algorithm in railway truss bridge optimization under stress, displacement and buckling constraints imposed on moving load

  • Mohammadzadeh, Saeed;Nouri, Mehrdad
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.571-594
    • /
    • 2013
  • Railway truss bridges are amongst the essential structures in railway transportation. Minimization of the construction and maintenance costs of these trusses can effectively reduce investments in railway industries. In case of railway bridges, due to high ratio of the live load to the dead load, the moving load has considerable influence on the bridge dynamics. In this paper, optimization of the railway truss bridges under moving load is taken into consideration. The appropriate algorithm namely Hyper-sphere algorithm is used for this multifaceted problem. Through optimization the efficiency of the method successfully raised about 5 percent, compared with similar algorithms. The proposed optimization carried out on several typical railway trusses. The influences of buckling, deformation constraints, and the optimum height of each type of truss, assessed using a simple approximation method.

Evaluation of In-plane Buckling and Ultimate Strength for Braced Arch Ribs (브레이스트 아치 리브의 면내 좌굴 및 극한강도 평가)

  • Park, Yong Myung;Heo, Taek Young;Lee, Pil Goo;Noh, Kyeung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.759-768
    • /
    • 2004
  • The parametric analysis of vertically braced steel pipe arch ribs was performed to evaluate their in-plane buckling strengths and ultimate load-carrying capacities. The elastic and plastic behavior of braced arch ribs, unlike those of the usual single arch ribs, are affected by such factors as the flexural rigidity of the brace member, brace and pipe ribs spacing, loading situation, and arch curvature. To analyze these effects, several parameters were included, such as the rise-to-span ratio, the second moment of the inertia ratio of the rib to the brace member, the space ratio of the brace, the space ratio of the upper and lower ribs, the initial crookedness, the slenderness ratios of the braced arch ribs, and the loading conditions were considered with live-load-to-dead-load ratios. Based on the results of the parametric analyses, a proper profile of the braced arch rib was proposed. A large-scale structural experiment was also performed to evaluate the ultimate strength of the braced arch rib. The test results were determined to reasonably coincide with the analytical ones.

A Study on Reliability of Current Ultimate Strength Design for Reinforced Concrete (현행(現行) 철근(鐵筋)콘크리트 극한강(極限强) 설계법(設計法)의 신뢰성(信賴性)에 관(關)한 연구(硏究))

  • Lee, Bong Hak
    • Journal of Industrial Technology
    • /
    • v.2
    • /
    • pp.3-11
    • /
    • 1982
  • Reliability analysis methods have been employed in this study to determine the safety index ${\beta}$ for flexure associated with reinforced concrete designs that are in accordance with current USD code of Korea. In reliability analysis, the mean first-order second-moment methods are employed. The following specific conclusions can be drawn from this study; 1) Levels of safety for reinforced concrete design, measured by ${\beta}$, vary from 2.8 to 3.8 in flexure depending on the limit state, the ratio of live load to dead load and the uncertainties. 2) Target reliability ${\beta}$ associated with reinforced concrete beams in flexure is assumed to be 3.5~4.0 in Korea. 3) Load factors and resistance factors in flexure associated with the current provisions contained in USD code generally seem to be too high. The writer concluded the factors as following; ${\phi}=0.8,\;{\gamma}_D=1.1\;{\gamma}_L=1.75$.

  • PDF

Physical and numerical modeling of drag load development on a model end-bearing pile

  • Shen, R.F.;Leung, C.F.;Chow, Y.K.
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.195-221
    • /
    • 2013
  • A centrifuge model study is carried out to investigate the behavior of pile subject to negative skin friction induced by pile installation, ground water drawdown and surcharge loading. A single end-bearing pile is examined as the induced negative skin friction would induce the most severe stress on the pile structural material as compared to friction piles. In addition, the behavior of the pile under simultaneous negative skin friction and dead/live loads is examined. To facilitate detailed interpretations of the test results, the model setup is extensively instrumented and involves elaborate test control schemes. To further examine the phenomenon of negative skin friction on an end-bearing pile, finite element analyses were conducted. The numerical analysis is first validated against the centrifuge test data and subsequently extended to examine the effects of pile slenderness ratio, surcharge intensity and pile-soil stiffness ratio on the degree of mobilization of negative skin friction induced on the pile. Finally experimental and numerical studies are conducted to examine the effect of applied transient live load on pile subject to negative skin friction.

Probabilistic Fatigue Life Evaluation of Steel Railway Bridges according to Live-Dead Loads Ratio (강철도교의 활하중-사하중 비에 따른 확률기반 피로수명 평가)

  • Lee, Sangmok;Lee, Young-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.339-346
    • /
    • 2019
  • Various studies have been conducted to evaluate the probabilistic fatigue life of steel railway bridges, but many of them are based on a relatively simple model of crack propagation. The model assumes zero minimum stress and constant loading amplitude, which is not appropriate for the fatigue life evaluation of railway bridges. Thus, this study proposes a new probabilistic method employing an advanced crack propagation model that considers the live-dead load ratio for the fatigue life evaluation of steel railway bridges. In addition, by using the rainflow cycle counting algorithm, it can handle variable-amplitude loading, which is the most common loading pattern for railway bridges. To demonstrate the proposed method, it was applied to a numerical example of a steel railway bridge, and the fatigue lives of the major components and structural system were estimated. Furthermore, the effects of various ratios of live-dead loads on bridge fatigue life were examined through a parametric study. As a result, with the increasing live-dead stress ratio from 0 to 5/6, the fatigue lives can be reduced by approximately 30 years at both the component and system levels.

System and member reliability of steel frames

  • Zhou, W.;Hong, H.P.
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.419-435
    • /
    • 2004
  • The safety level of a structural system designed per code specifications can not be inferred directly from the reliability of members due to the load redistribution and nonlinear inelastic structural behavior. Comparison of the system and member reliability, which is scarce in the literature, is likely to indicate any possible inconsistency of design codes in providing safe and economical designs. Such a comparative study is presented in this study for moment resisting two-dimensional steel frames designed per AISC LRFD Specifications. The member reliability is evaluated using the resistance of the beam-column element and the elastic load effects that indirectly accounts for the second-order effects. The system reliability analysis is evaluated based on the collapse load factor obtained from a second-order inelastic analysis. Comparison of the system and member reliability is presented for several steel frames. Results suggest that the failure probability of the system is about one order of magnitude lower than that of the most critically loaded structural member, and that the difference between the system and member reliability depends on the structural configuration, degree of redundancy, and dead to live load ratio. Results also suggest that the system reliability is less sensitive to initial imperfections of the structure than the member reliability. Therefore, the system aspect should be incorporated in future design codes in order to achieve more reliability consistent designs.

Comparison of reaction force and contact pressure on design truck load of slab bridge supported by MSEW abutment (보강토교대로 지지된 슬래브교의 설계 활하중에 대한 반력 및 접지압 검토)

  • Kim, Hong-Bae;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.510-519
    • /
    • 2019
  • In this study, the structural analysis was conducted to the comparison of reaction force and contact pressure on the design truck load (DB-24 and KL-510) of slab bridge supported by MSEW abutment. As a result of the structural analysis, the reaction force acting on the abutment at the continuous bridge was reduced rather than the simple span bridge. The reaction force due to the dead load was estimated to be about twice as large as that of the live load, and the influence of the live load on the total reaction force was relatively small. The contact pressure of the MSEW abutment was estimated to be the largest in the simple span bridge. The influence of contact pressure on the type of live load was relatively small. Therefore, it is considered to be more advantageous to apply the MSEW abutment to the continuous bridge than to the simple span bridge because the contact pressure acting on the abutment on the continuous bridge is estimated to be small. Since the reaction force and the load sharing ratio acting on the MSEW abutment depending on various conditions, it is necessary to examine the contact pressure in various types of bridges and specifications.