• Title/Summary/Keyword: live cell

Search Result 388, Processing Time 0.028 seconds

Differential Localisation of PARP-1 N-Terminal Fragment in PARP-1+/+ and PARP-1-/- Murine Cells

  • Rajiah, Ida Rachel;Skepper, Jeremy
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.526-531
    • /
    • 2014
  • Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 Nterminal fragment encompassing NLS in PARP-$1^{+/+}$ and PARP-$1^{-/-}$ mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-$1^{+/+}$ cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-$1^{-/-}$ cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.

Altered Gene Expression and Intracellular Changes of the Viable But Nonculturable State in Ralstonia solanacearum by Copper Treatment

  • Um, Hae Young;Kong, Hyun Gi;Lee, Hyoung Ju;Choi, Hye Kyung;Park, Eun Jin;Kim, Sun Tae;Murugiyan, Senthilkumar;Chung, Eunsook;Kang, Kyu Young;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.374-385
    • /
    • 2013
  • Environmental stresses induce several plant pathogenic bacteria into a viable but nonculturable (VBNC) state, but the basis for VBNC is largely uncharacterized. We investigated the physiology and morphology of the copper-induced VBNC state in the plant pathogen Ralstonia solanacearum in liquid microcosm. Supplementation of $200{\mu}M$ copper sulfate to the liquid microcosm completely suppressed bacterial colony formation on culture media; however, LIVE/DEAD BacLight bacterial viability staining showed that the bacterial cells maintained viability, and that the viable cells contain higher level of DNA. Based on electron microscopic observations, the bacterial cells in the VBNC state were unchanged in size, but heavily aggregated and surrounded by an unknown extracellular material. Cellular ribosome contents, however, were less, resulting in a reduction of the total RNA in VBNC cells. Proteome comparison and reverse transcription PCR analysis showed that the Dps protein production was up-regulated at the transcriptional level and that 2 catalases/peroxidases were present at lower level in VBNC cells. Cell aggregation and elevated levels of Dps protein are typical oxidative stress responses. $H_2O_2$ levels also increased in VBNC cells, which could result if catalase/peroxidase levels are reduced. Some of phenotypic changes in VBNC cells of R. solanacearum could be an oxidative stress response due to $H_2O_2$ accumulation. This report is the first of the distinct phenotypic changes in cells of R. solanacearum in the VBNC state.

STUDY ON THE POTENTIALITY OF DUCKWEEDS AS A FEED FOR CATTLE

  • Huque, K.S.;Chowdhury, S.A.;Kibria, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.2
    • /
    • pp.133-137
    • /
    • 1996
  • Duckweed, an aquatic plant of the family Lemnaceae, is a rich source of protein and also contains cell wall materials. Spirodela, Lemna and Wolffia, the most available species of duckweeds were evaluated in terms of their chemical composition, the rate and extent of digestion of their dry matter(DM) and crude protein(CP) in the rumen and also their acceptability to the cattle. The three species contained CP of 284, 399 and $299g{\cdot}kg^{-1}$ DM, respectively; NDF of 471, 574 and $476g{\cdot}kg^{-1}$ DM, respectively; ADF of 215, 203 and $227g{\cdot}kg^{-1}$ DM, respectively. The rumen digestibilities of DM of the three species for 24 h were 410, 570 and $731g{\cdot}kg^{-1}$ DM, respectively and of CP were 528, 740 and $778g{\cdot}kg^{-1}$ DM, respectively. The rates of digestion of DM of the three duckweeds were 2.22, 3.63 and $5.73%h^{-1}$, respectively and of CP were 5.14, 4.22 and $6.05%h^{-1}$, respectively. Similarly, the extent of digestion of DM were 853, 723 and $926g{\cdot}kg^{-1}$ DM, respectively and of CP were 801, 874 and $943g{\cdot}kg^{-1}$ DM, respectively. Mixed duckweeds as a component of a concentrate mixture were eaten by the cattle at the rate of 10% of their live weights. It may be concluded that the dry matter and crude protein of the available duckweeds wee highly degradable in the rumen and may be fed to cattle mixing with concentrates. For the effective utilization of duck weeds as cattle feed their effect on the rumen digestion kinetics of a roughage diet need to be studied carefully.

Shigellosis

  • Niyogi Swapan Kumar
    • Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.133-143
    • /
    • 2005
  • Shigellosis is a global human health problem. Four species of Shigella i.e. S. dysenteriae, S. flexneri, S. boydii and S. sonnei are able to cause the disease. These species are subdivided into serotypes on the basis of O-specific polysaccharide of the LPS. Shigella dysenteriae type 1 produces severe disease and may be associated with life-threatening complications. The symptoms of shigellosis include diarrhoea and/or dysentery with frequent mucoid bloody stools, abdominal cramps and tenesmus. Shigella spp. cause dysentery by invading the colonic mucosa. Shigella bacteria multiply within colonic epithelial cells, cause cell death and spread laterally to infect and kill adjacent epithelial cells, causing mucosal ulceration, inflammation and bleeding. Transmission usually occurs via contaminated food and water or through person-to-person contact. Laboratory diagnosis is made by culturing the stool samples using selective/differential agar media. Shigella spp. are highly fragile organism and considerable care must be exercised in collecting faecal specimens, transporting them to the laboratories and in using appropriate media for isolation. Antimicrobial agents are the mainstay of therapy of all cases of shigellosis. Due to the global emergence of drug resistance, the choice of antimicrobial agents for treating shigellosis is limited. Although single dose of norfloxacin and ciprofloxacin has been shown to be effective, they are currently less effective against S. dysenteriae type 1 infection. Newer quinolones, cephalosporin derivatives, and azithromycin are the drug of choice. However, fluoroquinolone-resistant S. dysenteriae type 1 infection have been reported. Currently, no vaccines against Shigella infection exist. Both live and subunit parenteral vaccine candidates are under development. Because immunity to Shigella is serotype-specific, the priority is to develop vaccine against S. dysenteriae type 1 and S. flexneri type 2a. Shigella species are important pathogens responsible for diarrhoeal diseases and dysentery occurring all over the world. The morbidity and mortality due to shigellosis are especially high among children in developing countries. A recent review of literature (KotIoff et al.,1999) concluded that, of the estimated 165 million cases of Shigella diarrhoea that occur annually, $99\%$ occur in developing countries, and in developing countries $69\%$ of episodes occur in children under five years of age. Moreover, of the ca.1.1 million deaths attributed to Shigella infections in developing countries, $60\%$ of deaths occur in the under-five age group. Travellers from developed to developing regions and soldiers serving under field conditions are also at an increased risk to develop shigellosis.

Effect of supplementation of feed with Flaxseed (Linumusitatisimum) oil on libido and semen quality of Nilli-Ravi buffalo bulls

  • Shah, Syed Mazhar Hussain;Ali, Shujait;Zubair, Muhammad;Jamil, Huma;Ahmad, Nazir
    • Journal of Animal Science and Technology
    • /
    • v.58 no.7
    • /
    • pp.25.1-25.6
    • /
    • 2016
  • Background: The current study was designed to investigate the effect of supplementation of Flaxseed (Linumusitatisimum) oil on libido and semen quality of Nilli-Ravi buffalo bulls. Methods: In this study, 12 adult healthy bulls kept at the Semen Production Unit, Qadirabad district Sahiwal, were used. These bulls were divided into three equal groups, A, B and C. Group A was kept as control, while in groups B and C supplementation of feed was provided by using flaxseed oil @125 ml/day and 250 ml/day,respectively for 12 weeks. Two ejaculates per animal were collected at 0 day then 5th, 6th, 7th, 8th, 9th, 10th, 11th and 12th week of treatment. In this way a total 216 samples were taken, and each semen sample was evaluated for color, volume, mass activity, percent motility, sperm cell concentration per ml, percentage of live sperm, and plasma membrane integrity. Libido of bulls was also evaluated before every collection. Results: Analysis of data revealed that these parameters were significantly (P < 0.01) increased in flax oil treated animals as compared to control. Conclusion: It was concluded from the present study that flax seed oil has beneficial effects on reproductive health of buffalo bull.

Cloning and Expression of hpaA Gene of Korean Strain Helicobacter pylori K51 in Oral Vaccine Delivery Vehicle Lactococcus lactis subsp. lactis MG1363

  • Kim Su-Jung;Jun Do-Youn;Yang Chae-Ha;Kim Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.318-324
    • /
    • 2006
  • In order to develop an oral vaccine to prevent H. pylori infection, we have expressed the hpaA gene of H. pylori K51 isolated from Korean patients, encoding 29-kDa HpaA that is known to be localized on the cell surface and flagella sheath, in a live delivery vector system, Lactococcus lactis. The hpaA gene, amplified by PCR using the genomic DNA of H. pylori K51, was cloned in the pGEX-2T vector, and the DNA sequence analysis revealed that the hpaA gene of H. pylori K51 had 99.7% and 94.8% identity with individual hpaA genes of the H. pylori 26695 strain (U.K) and the J99 strain (U.S.A). A polyclonal anti-HpaA antibody was raised in rats using GST-HpaA fusion protein as the antigen. The hpaA gene was inserted in an E. coli-L. lactis-shuttle vector (pMG36e) to express in L. lactis. Western blot analysis showed that the expression level of HpaA in the L. lactis transformant remained constant from the exponential phase to the stationary phase, without extracelluar secretion. These results indicate that the HpaA of H. pylori K51 was successfully expressed in L. lactis, and suggest that the recombinant L. lactis expressing HpaA may be applicable as an oral vaccine to induce a protective immune response against H. pylori.

Influence of Ischemic Duration on Extent of Focal Ischemic Brain Injury Induced by Middle Cerebral Artery Occlusion in Rats (백서의 중대뇌동맥 페쇄에 의한 국소 허혈성 뇌손상의 정도에 미치는 허혈 시간의 영향)

  • 구희정;정경자;김명수;진창배
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.160-166
    • /
    • 2000
  • The present study examined influence of various ischemic duration on extent of focal ischemic brain injury induced by middle cerebral artery occlusion (MCAO) in rats. The MCAO was produced by insertion of a 17 mm silicone-coated 4-0 nylon surgical thread to the origin of MCA through the internal carotid artery for 30, 60, 90, 120 min (transient) or 24 hr (permanent) in male Sprague-Dawley rats under isoflurane anesthesia. Reperfusion in transient MCAO models was achieved by pulling the thread out of the internal carotid artery. Only rats showing neurological deficits characterized by left hemiparesis and/or circling to the left, were included in cerebral ischemic groups. The rats were sacrificed 24 hr after MCAO and seven serial coronal slices of the brain were stained with 2,3,5-triphenyltetrazolium chloride. Infarct size was measured using a computerized image analyzer. Ischemic damage was common in the frontoparietal cortex (somatosensory area) and the lateral segment of the striatum while damage to the medial segment of the striatum depended on the duration of the occlusion. In the 30-min MCAO grouts, however, infarcted region was primarily confined to the striatum and it was difficult to clearly delineate the region since there was mixed population of live and dead cells in the nucleus. Infarct volume was generally increased depending on the duration of MCAO, showing the most severe damage in the permanent MCAO group. However, there was no significant difference in infarct size between the 90-min and 120-min MCAO groups. % Edema also tended to increase depending on the duration of MCAO. The results suggest that the various focal ischemic rat models established in the present study can be used to evaluate in vivo neuroprotective activities of candidate compounds or to elucidate pathophysiological mechanisms of ischemic neuronal cell death.

  • PDF

Formation of Chloroform from Algal Cell Cultures by Chlorination (배양조류의 염소소독에 의한 클로로포름 생성특성 연구)

  • Kim, Hak-Chul;Choi, Il-Whan
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.2
    • /
    • pp.40-48
    • /
    • 2009
  • Unusual bloom of toxic cyanobacteria in water bodies have drawn attention of environmentalists world over. Major bloom of Anabaena, Microcystis in water storage reservoir, rivers and lake leading to adverse health effects have been reported from Australia, England and many part of the world. These cyanobacterial cells can release intercellular matter like toxin in water and these intercellular matter can increase the concentration of organic matter. Cellysis can occur when algal cells meet the disinfectants like chlorine in water treatment plant and the resultant rising up of DOC(Dissolved Organic Carbon) or TOC(Total Organic Carbon) can increase the formation of disinfection by products. Disinfectants that kill microorganisms react with the organic or inorganic matter in raw water. In general disinfectants oxidize the matter in raw water and the resultant products can be harmful to human. There are always conflict about which is more important, disinfection or minimizing disinfection by products. The best treatment process for raw water is the process of the lowest disinfection by products and also the the lowest microorganism. In this study the cultured cells, Microcytis Aeruginosa(MA), Anabaena Flos-aquae(AF), Anabaena Cylindrica(AC), and the cells obtained in Daechung Dam(DC) whose dominant species was Anabaena Cylindrica were subjected to chlorination. Chlorination oxidizes inorganic and organic compounds and destruct live cells in raw water. Chloroform was analyzed for the cultured cells which were treated with $20mg/\ell$ dose of chlorine. In general chloroform is easily formed when dissolved organic matter react with chlorine. The cultured cells contributes the concentration of dissolved organic carbon and also that of total organic carbon which might be potent precusors of chloroform formed. The correlations of the concentration of chloroform, DOC and TOC were investigate in this study.

Molecular Characterization of Adenylyl Cyclase Complex Proteins Using Versatile Protein-Tagging Plasmid Systems in Cryptococcus neoformans

  • So, Yee-Seul;Yang, Dong-Hoon;Jung, Kwang-Woo;Huh, Won-Ki;Bahn, Yong-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.357-364
    • /
    • 2017
  • In this study, we aimed to generate a series of versatile tagging plasmids that can be used in diverse molecular biological studies of the fungal pathogen Cryptococcus neoformans. We constructed 12 plasmids that can be used to tag a protein of interest with a GFP, mCherry, $4{\times}FLAG$, or $6{\times}HA$, along with nourseothricin-, neomycin-, or hygromycin-resistant selection markers. Using this tagging plasmid set, we explored the adenylyl cyclase complex (ACC), consisting of adenylyl cyclase (Cac1) and its associated protein Aca1, in the cAMP-signaling pathway, which is critical for the pathogenicity of C. neoformans. We found that Cac1-mCherry and Aca1-GFP were mainly colocalized as punctate forms in the cell membrane and non-nuclear cellular organelles. We also demonstrated that Cac1 and Aca1 interacted in vivo by co-immunoprecipitation, using $Cac1-6{\times}HA$ and $Aca1-4{\times}FLAG$ tagging strains. Bimolecular fluorescence complementation further confirmed the in vivo interaction of Cac1 and Aca1 in live cells. Finally, protein pull-down experiments using $aca1{\Delta}$::ACA1-GFP and $aca1{\Delta}$::ACA1-GFP $cac1{\Delta}$ strains and comparative mass spectrometry analysis identified Cac1 and a number of other novel ACC-interacting proteins. Thus, this versatile tagging plasmid system will facilitate diverse mechanistic studies in C. neoformans and further our understanding of its biology.

Trichomonas vaginalis and trichomoniasis in the Republic of Korea

  • Ryu, Jae-Sook;Min, Duk-Young
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.2 s.138
    • /
    • pp.101-116
    • /
    • 2006
  • Vaginal trichomoniasis, caused by Trichomonas vaginalis, is the most common sexually transmitted disease. More than 170 million people worldwide are annually infected by this protozoan. In the Republic of Korea, 10.4% of women complaining of vaginal symptoms and signs were found to be infected with T. vagina/is. However, despite its high prevalence, the pathogenesis of T. vaginalis infection has not been clearly characterized although neutrophil infiltration is considered to be primarily responsible for the cytologic changes associated with this infection. We hypothesized that trichomonads in the vagina sometime after an acute infection secrete proteins like excretory-secretory product that have a chemotactic effect on neutrophils, and that these neutrophils are further stimulated by T. vaginalis to produce chemokines like IL-8 and $GRO-\alpha$, which further promote neutrophil recruitment and chemotaxis. Thus, neutrophil accumulation is believed to maintain or aggravate inflammation. However, enhanced neutrophil apoptosis induced by live T. vaginalis could contribute to resolution of inflammation. Macrophages may constitute an important component of host defense against T. vaginalis infection. For example, mouse macrophages alone and those activated by lymphokines or nitric oxide are known to be involved in the extracellular killing of T. vaginalis. In the host, T. vaginalis uses a capping phenomenon to cleave host immunoglobulins with proteinases and thus escape from host immune responses. Recently, we developed a highly sensitive and specific diagnostic polymerase chain reaction (PCR) technique using primers based on a repetitive sequence cloned from T. vaginalis (TV-E650), and found that the method enables the detection of T. vaginalis at concentrations as low as 1 cell per PCR mixture.