• Title/Summary/Keyword: litter decomposition

Search Result 104, Processing Time 0.017 seconds

Studies on the Decomposition of Leaf Litter Containing Heavy Metals in Andong Serpentine Area, Korea I. Microcosm Experiment (사문암지대의 중금속 함유 낙엽의 분해에 관한 연구 I. Microcosm 실험)

  • Ryou, Sae-Han;Kim, Jeong-Myeong;Shim, Jae-Kuk
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • This study attempted to compare the litter decomposition rate of Arundinella hirta and Miscanthus sinensis var. purpurascens which collected from serpentine soil acting potentially toxic concentration of heavy metals and non-serpentine soil by using the microcosm method for 192 days under constant humidity and $23^{\circ}C$. The contents of Ni, Fe, Mg and Cr in the serpentine and nonserpentine soil originated litter showed high differences between them. The litter samples from serpentine site have lower C/N than non-serpentine litter, but the soluble carbohydrate content was shown almost similar between two plant litter. The mass loss rates of leaf litter from serpentine area were slower than those from non-serpentine site. During the experimental period, the remained dry weight of A. hirta and M. sinensis var. purpurascens litter collected from serpentine site were 64.7%, 65.0% of initial dry weight and litter samples from non-serpentine site showed 54.2%, 50.7%, respectively. K and Na were leached rapidly at the initial decomposition periods, but Ca showed immobilization and other metal elements reserved at the decomposing litter for a long time. The decomposing A. hirta litter from non-serpentine soil showed higher values of $CO_2$ evolution, microbial biomass-C, and microbial biomass-N than those in serpentine soil originated litter acting nutrient stresses and exhibited rapid decay rate. The microbial biomass and microbial respiration of decaying litter were positively correlated with litter decomposition rate, and these relationships showed more rapid slope in non-serpentine soil originated litter than that in serpentine soil.

Effects of simulated acid rain on microbial activities and litter decomposition

  • Lim, Sung-Min;Cha, Sang-Seob;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.401-410
    • /
    • 2011
  • We assayed the effects of simulated acid rain on the mass loss, $CO_2$ evolution, dehydrogenase activity, and microbial biomass-C of decomposing Sorbus alnifolia leaf litter at the microcosm. The dilute sulfuric acid solution composed the simulated acid rain, and the microcosm decomposition experiment was performed at 23$^{\circ}C$ and 40% humidity. During the early decomposition stage, decomposition rate of S. alnifolia leaf litter, and microbial biomass, $CO_2$ evolution and dehydrogenase activity were inhibited at a lower pH; however, during the late decomposition stage, these characteristics were not affected by pH level. The fungal component of the microbial community was conspicuous at lower pH levels and at the late decomposition stage. Conversely, the bacterial community was most evident during the initial decomposition phase and was especially dominant at higher pH levels. These changes in microbial community structure resulting from changes in microcosm acidity suggest that pH is an important aspect in the maintenance of the decomposition process. Litter decomposition exhibited a positive, linear relationship with both microbial respiration and microbial biomass. Fungal biomass exhibited a significant, positive relationship with $CO_2$ evolution from the decaying litter. Acid rain had a significant effect on microbial biomass and microbial community structure according to acid tolerance of each microbial species. Fungal biomass and decomposition activities were not only more important at a low pH than at a high pH but also fungal activity, such as $CO_2$ evolution, was closely related with litter decomposition rate.

Basal area effects on a short-term nutrient status of litter fall and needle litter decomposition in a Pinus densiflora stand

  • Kim, Choonsig
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.51-60
    • /
    • 2016
  • This study was conducted to examine litter fall, litter decomposition, and a short-term nutrient (C, N, P, K, Ca, and Mg) status for one year at various levels of basal area (21.4, 27.0, 30.8, 37.0, 42.1, and 46.7 m2 ha-1) in approximately 40-yearold red pine (Pinus densiflora S. et Z.) stands in the Hwangmaesan mountain forest in Korea. Monthly fluxes of litter fall components such as needles, broad leaves, branches, bark and total litter fall followed a similar pattern at various levels of basal area. Mean annual needle, bark and total litter fall fluxes were positively correlated with increased basal area (p<0.05), but the woody litter such as branches and cones was not correlated with basal area. Carbon and K concentrations of needle litter were negatively correlated with increased basal area, while nutrient (C, N, P, K, Ca, and Mg) fluxes were positively correlated with the basal area treatments. Remaining mass, N and P concentration and remaining N and P stocks in decomposing needle litter were not affected by the basal area. However, the concentration and stocks remaining of K, Ca, and Mg from decomposing litter were positively correlated with increased basal area during the initial three months of decomposition. The results indicate that basal area has an impact on nutrient cycles through change in litter fall and litter decomposition processes; thus, the dynamics of nutrient cycles based on a stand scale could differ considerably with different levels of basal area in red pine stands.

Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review

  • Giweta, Mekonnen
    • Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.81-89
    • /
    • 2020
  • In the forest ecosystems, litterfall is an important component of the nutrient cycle that regulates the accumulation of soil organic matter (SOM), the input and output of the nutrients, nutrient replenishment, biodiversity conservation, and other ecosystem functions. Therefore, a profound understanding of the major processes (litterfall production and its decomposition rate) in the cycle is vital for sustainable forest management (SFM). Despite these facts, there is still a limited knowledge in tropical forest ecosystems, and further researches are highly needed. This shortfall of research-based knowledge, especially in tropical forest ecosystems, may be a contributing factor to the lack of understanding of the role of plant litter in the forest ecosystem function for sustainable forest management, particularly in the tropical forest landscapes. Therefore, in this paper, I review the role of plant litter in tropical forest ecosystems with the aims of assessing the importance of plant litter in forest ecosystems for the biogeochemical cycle. Then, the major factors that affect the plant litter production and decomposition were identified, which could direct and contribute to future research. The small set of studies reviewed in this paper demonstrated the potential of plant litter to improve the biogeochemical cycle and nutrients in the forest ecosystems. However, further researches are needed particularly on the effect of species, forest structures, seasons, and climate factors on the plant litter production and decomposition in various types of forest ecosystems.

A Comparative Study on Litter Decomposition of Emergent Macrophytes in the Littoral Zone of Reservoir

  • Jo, Kang-Hyun;Gong, Hak-Yang
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.333-339
    • /
    • 1998
  • Litter decomposition is a key process in energy flow and nutrient cycling in the freshwater littoral zone, and is regulated by physicochemical properties of litters. Using a litterbag method, we compared the decomposition rates of 16 different litter types from 10 plant species of the emergent macrophytes for one year in the littoral zone of the Paltangho Reservoir, Korea. The regression analysis fitted to the various decomposition models showed that mass loss of the litters with time best fitted an asymptotic function. The litters of the emergent macrophytes were composed of two compartments, labile and refractory. The macrophytic litters showed a great variety in decomposition dynamics depending on sources of litters. The labile compartment of the initial litter mass was in a wide range between 18% and 99%, and their decomposition rates varied from 0.0037 to 0.0131 day-1. The decomposition processes of the emergent macrophytes were determined by the relative amounts of the labile and refractory compartments and by the decomposition rate of the habile one in the littoral zone.

  • PDF

Litter Decomposition Process in Coffee Agroforestry Systems

  • Petit-Aldana, Judith;Rahman, Mohammed Mahabubur;Parraguirre-Lezama, Conrado;Infante-Cruz, Angel;Romero-Arenas, Omar
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.2
    • /
    • pp.121-139
    • /
    • 2019
  • Decomposition of litter is a function of various interrelated variables, both biotic and abiotic factors. Litter decomposition acts like a natural fertilizer play a prime role in maintaining the productivity and nutrient cycling in agroforestry systems. There are few studies of decomposition carried out in agroforestry systems with coffee; so it is necessary to perform more research work to fill the research gap, which will allow a better understanding of the management of the coffee agroforestry systems. This paper is based on the theoretical and conceptual aspects of leaf litter decomposition in agroforestry systems, emphasizing the combination with coffee cultivation and critically examined the role of the different factors involved in the decomposition. This study made a comparison of different investigations with regards to weight loss, decomposition rates (k), initial chemical composition, and release of the main nutrients. This study suggested that it is necessary to implement studies of decomposition and mineralization, and the microflora and fauna associated with these processes, so that serves as an important tool to develop a model for enabling a description of the short, medium, and long-term dynamics of soil nutrients in coffee agroforestry systems.

Litter Production and Decomposition in the Querces acutissima and Pinus rigida Forests (상수리나무림과 리기다소나무림의 낙엽 생산과 분해)

  • 문형태;주환택
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.345-353
    • /
    • 1994
  • Litter production and decomposition were investigated for 2 years in the oak, Quercus acutissima, and the pitch pine, Pinus rigida, stands in the vicinity of Kongju, Chungnam Province. Litter production was measured with litter trap at monthly basis. Litterbag method was used for the measurement of litter decomposition. Litter producion continued throughout the year, but showed a peak in autumn. Second peak in May or June was caused by falling of bud scales and reproductive organs. Average litter production in the oak and the pitch pine stands were $567.1g{\cdot}m^{-2}{\cdot}yr^{-1}\;and\;653.2g{\cdot}m^{-2}{\cdot}yr^{-1}$, respectively. Litter production in this study area were higher than those in other reports. Nutrient concentrations in litter were the highest in summer when the least litter production occurred, and the lowest in autumn when the greatest litter production occurred, except for calcium in the oak stand. Nutrient concentrations of the oak litter were higher than those in the pitch pine litter. After 1 year, % remaining mass of oak and pitch pine litter was 43.6% and 58%, respectively. After 21 months elapsed, % remaining mass of oak and pitch pine litter was 22.2% and 33.2%, respectively.

  • PDF

Thinning Effects on Litterfall Inputs and Litter Decomposition in Pinus densiflora S. et Z. and Quercus variabilis Blume Stands

  • Baek, Gyeongwon;Baek, Gyeongrin;Kim, Hojin;Lee, Jihyun;Kim, Hyungsub;Kim, Choonsig
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.1
    • /
    • pp.48-54
    • /
    • 2022
  • This study was conducted to examine litter inputs and litter decomposition rates following thinning, which is among the most important forest management activities that enhance the beneficial functions in Korean forests. Litter inputs and litter decomposition rates following a 2-year elapse from thinning in Pinus densiflora and following a 7-year elapse from thinning in Quercus variabilis stands were measured for 2 years from 16 sites in three regions (Sancheong-gun, Uiryeong-gun, and Jinju-si) in Gyeongsangnam-do, Korea. Annual needle litter inputs in P. densiflora stands were significantly decreased following thinning, whereas annual broadleaved leaf litter inputs in Q. variabilis stands were not significantly different between thinned and unthinned treatments. The annual mean total litter inputs in both tree species were significantly lower in the thinned (P. densiflora: 3,653 kg ha-1 year-1; Q. variabilis: 4,963 kg ha-1 year-1) compared to the unthinned stands (P. densiflora: 5,138 kg ha-1 year-1; Q. variabilis: 5,997 kg ha-1 year-1) during the study period. The mass loss rates from decomposing needle litter in P. densiflora stands were significantly lower (p<0.05) in the thinned stands than in the unthinned stands for two sampling dates of the eight included in the study, whereas the decomposition rates from decomposing leaf litter in Q. variabilis stands were not affected by thinning. The results indicate that thinning effects on total litter inputs remained clear following a 2-year elapse from thinning in P. densiflora stands and following a 7-year elapse from thinning in Q. variabilis stands.

Decomposition and, Nitrogen, Phosphorus and Potassium Dynamics of Pinus thundbergii Needle Litter (해송엽(海松葉) Litter의 분해(分解)와 N, P 및 K의 동태(動態))

  • Yi, Myong-Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.3
    • /
    • pp.303-310
    • /
    • 1991
  • Seasonal patterns of decomposition and nutrient release from the needle litter were examined using litter-bags in coastal Pinus thunbergii forests in nothern Kyushu, Japan. Dry matter losses from decomposing needle litter were smillar in all standsover a experimental period. Mass loss in dry weight is lost rapidly during the first year, and thereafter the rate of loss slows. Litter lost approximately 40% of initial mass in 1 yr. The predicted decay constant, k values ranged from 0.5 to 0.6 Decomposition half-times($t_{0.50}$) ranged from 1.1 to 1.4 year. In the decomposing needle litter, the concentrations of N and P generally increased with time while the concentration of K decreased. A decrease in absolute amount was noted for K during decomposition while in an increase was found for N. The order of mobility of elements was K>P>N. Mineralization phase of N had not appeared during the experiment.

  • PDF

Nutrient dynamics in decomposing litter from four selected tree species in Makurdi, Benue State, Nigeria

  • Okoh, Thomas;Edu, Esther
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.376-384
    • /
    • 2019
  • Background: Nutrient release during litter decomposition was investigated in Vitex doniana, Terminalia avecinioides, Sarcocephallus latifolius, and Parinari curatellifolius in Makurdi, Benue State Nigeria (January 10 to March 10 and from June 10 to August 10, 2016). Leaf decomposition was measured as loss in mass of litter over time using the decay model Wt/W0 = e-kd t, while $Kd=-{\frac{1}{t}}In({\frac{Wt}{W0}})$ was used to evaluate decomposition rate. Time taken for half of litter to decompose was measured using T50 = ln 2/k; while nutrient accumulation index was evaluated as $NAI=(\frac{{\omega}t\;Xt}{{\omega}oXo})$. Results: Average mass of litter remaining after exposure ranged from 96.15 g, (V. doniana) to 78.11 g, (S. lafolius) in dry (November to March) and wet (April to October) seasons. Decomposition rate was averagely faster in the wet season (0.0030) than in the dry season (0.0022) with P. curatellifolius (0.0028) and T. avecinioides (0.0039) having the fastest decomposition rates in dry and wet seasons. Mean residence time (days) ranged from 929 to 356, while the time (days) for half the original mass to decompose ranged from 622 to 201 (dry and wet seasons). ANOVA revealed highly significant differences (p < 0.01) in decomposition rates and exposure time (days) and a significant interaction (p < 0.05) between species and exposure time in both seasons. Conclusion: Slow decomposition in the plant leaves implied carbon retention in the ecosystem and slow release of CO2 back to the atmosphere, while nitrogen was mineralized in both seasons. The plants therefore showed effectiveness in nutrient cycling and support productivity in the ecosystem.