• Title/Summary/Keyword: lithium battery

Search Result 1,383, Processing Time 0.03 seconds

리튬이차전지용 양극재 개발 동향 (The Research and Development Trend of Cathode Materials in Lithium Ion Battery)

  • 박홍규
    • 전기화학회지
    • /
    • 제11권3호
    • /
    • pp.197-210
    • /
    • 2008
  • 리튬이차전지용 양극재는 전지 성능발전과 더불어 다양하게 발전되어 왔다. 처음으로 채용된 $LiCoO_2$는 초기의 부족한 성능을 도핑이나 표면개질이라는 기술을 채용하여 지속적인 발전을 거듭하면서 최근 4.3V에 가까운 충전전압에서도 적용 가능하게 되었다. 한편으로 응용기기가 복잡해지면서 요구되는 특성도 한층 강화되었다. 높은 작동전압 뿐만 아니라 고용량이 요구되면서 새로운 재료에 대한 연구개발이 시작되었고, 그 중에서도 ${LiNi}_{1-x}{M_xO_2}$, $Li[Ni_{x}Mn_{y}Co_{z}]O_{2}$, $Li[{Ni}_{1/2}{Mn}_{1/2}]O_{2}$등 다양한 재료들이 개발되기에 이르렀다. 최근에는 고유가에 따라 전기자동차용 개발이활발해지면서 고안전성의 새로운 재료가 필요하게 되었고, 이러한 요구에 수렴하여 ${LiMn_2}{O_4}$, $LiFePO_4$와 같은 안전성이 매우 우수한 재료가 개발되었다. 향 후 양극재 부분은 이외에도 다양한 상들이 고용량과 동시에 안전성이 뛰어난 고용체를 이루고 있는 복합체 양극재를 비롯하여 다양한 재료들이 개발될 것으로 여겨진다.

The Lithium Ion Battery Technology

  • Lee, Ki-Young
    • Carbon letters
    • /
    • 제2권1호
    • /
    • pp.72-75
    • /
    • 2001
  • The performance of Li-ion system based on $LiCoO_2$ and Graphite is well optimized for the 3C applications. The charge-discharge mode, the manufacturing process, the cell performance and the thermal reactions affecting safety has been explained in the engineering point of view. The energy density of the current LIB system is in the range of 300~400 Wh/l. In order to achieve the energy density higher than 500 Wh/l, the active materials should be modified or changed. Adopting new high capacity anode materials would be effective to improve energy density.

  • PDF

Adaptive State-of-Charge Estimation Method for an Aeronautical Lithium-ion Battery Pack Based on a Reduced Particle-unscented Kalman Filter

  • Wang, Shun-Li;Yu, Chun-Mei;Fernandez, Carlos;Chen, Ming-Jie;Li, Gui-Lin;Liu, Xiao-Han
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1127-1139
    • /
    • 2018
  • A reduced particle-unscented Kalman filter estimation method, along with a splice-equivalent circuit model, is proposed for the state-of-charge estimation of an aeronautical lithium-ion battery pack. The linearization treatment is not required in this method and only a few sigma data points are used, which reduce the computational requirement of state-of-charge estimation. This method also improves the estimation covariance properties by introducing the equilibrium parameter state of balance for the aeronautical lithium-ion battery pack. In addition, the estimation performance is validated by the experimental results. The proposed state-of-charge estimation method exhibits a root-mean-square error value of 1.42% and a mean error value of 4.96%. This method is insensitive to the parameter variation of the splice-equivalent circuit model, and thus, it plays an important role in the popularization and application of the aeronautical lithium-ion battery pack.

Introducing an Efficient and Eco-Friendly Spray-Drying Process for the Synthesis of NCM Precursor for Lithium-ion Batteries

  • Hye-Jin Park;Seong-Ju Sim;Bong-Soo Jin;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.168-177
    • /
    • 2024
  • Ni-rich cathode is one of the promising candidates for high-energy lithium-ion battery applications. Due to its specific capacity, easy industrialization, and good circulation ability, Ni-rich cathode materials have been widely used for lithium-ion batteries. However, due to the limitation of the co-precipitation method, including sewage pollution, and the instability of the long production cycles, developing a new efficient and environmentally friendly synthetic approach is critical. In this study, the Ni0.91Co0.06Mn0.03CO3 precursor powder was successfully synthesized by an efficient spray-drying method using carbonate compounds as a raw material. This Ni0.91Co0.06Mn0.03CO3 precursor was calcined by mixing with LiOH·H2O (5 wt% excess) at 480℃ for 5 hours and then sintered at two different temperatures (780℃/800℃) for 15 hours under an oxygen atmosphere to complete the cathode active material preparation, which is a key component of lithium-ion batteries. As a result, LiNi0.91Co0.06Mn0.03O2 cathode active material powders were obtained successfully via a simple sintering process on the Ni0.91Co0.06Mn0.03CO3 precursor powder. Furthermore, the obtained LiNi0.91Co0.06Mn0.03O2 cathode active material powders were characterized. Overall, the material sintered at 780℃ shows superior electrochemical performance by delivering a discharge capacity of 190.76 mAh/g at 1st cycle (0.1 C) and excellent capacity retention of 66.80% even after 50 cycles.

전해질 분리판용 세라믹 부직포와 리튬염간의 반응성 (Reaction Behavior of Ceramic Mat with Lithium Salt for the Electrolyte Separators of Thermal Batteries)

  • 조광연;류도형;신동근;임경훈;진은주;김현이;하상현;최종화
    • 한국세라믹학회지
    • /
    • 제46권6호
    • /
    • pp.587-591
    • /
    • 2009
  • Lithium salt have been used mainly as electrolyte of thermal battery for electricity storage. Recently, The 3phase lithium salt(LiCl-LiF-LiBr) is tried to use as electrolyte of thermal battery for high electric power. It is reported that LiCl-LiF-LiBr salt have high ion mobility due to its high lithium ion concentration. Solid lithium salt is melt to liquid state at above $500{^{\circ}C}$. The lithium ion is easily reacted with support materials. Because the melted lithium ion has small ion size and high ion mobility. For the increasing mechanical strength of electrolyte pellet, the research was started to apply ceramic filter to support of electrolyte. In this study, authors used SiOC web and glass fiber filter as ceramic mat for support of electrolyte and impregnated LiCl-LiF-LiBr salt into ceramic mat at above $500{^{\circ}C}$. The fabricated electrolyte using ceramic mat was washed with distilled water for removing lithium salt on ceramic mat. The washed ceramic mat was observed for lithium ion reaction behavior with XRD, SEM-EDS and so on.

리튬 2차 전지의 열적 모델링 및 용량 예측에 관한 연구 (The Study on Thermal Modeling and Charge Capacity Estimation for Lithium Secondary Battery)

  • 김종원;조현찬;김광선;조장군;이정수;호빈
    • 반도체디스플레이기술학회지
    • /
    • 제6권1호
    • /
    • pp.53-57
    • /
    • 2007
  • In this paper, the intelligent estimation algorithm is developed for residual quantity estimate of lithium secondary cell and we suggest the control algorithm to get battery SOC through thermal modeling of electric cell. Lithium secondary cell gives cycle life, charge characteristic, discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc. Therefore, we make an accurate estimate of the capacity of battery according to thermal modeling to know the capacity of electric cell that is decreased by various special quality of lithium secondary cell. And we show effectiveness through comparison of value as result that use simulation and fuzzy logic.

  • PDF

Performance Comparison Analysis of Artificial Intelligence Models for Estimating Remaining Capacity of Lithium-Ion Batteries

  • Kyu-Ha Kim;Byeong-Soo Jung;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권3호
    • /
    • pp.310-314
    • /
    • 2023
  • The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.

NCM 리튬 이온 배터리의 양극 표면 코팅물질에 따른 성능변화 ( Performance variation of Nickel-Cobalt-Manganese lithium-ion battery by cathode surface coating materials )

  • 유진욱;표성규
    • 한국표면공학회지
    • /
    • 제57권2호
    • /
    • pp.57-70
    • /
    • 2024
  • Nickel-cobalt-manganese (NCM) lithium-ion batteries(LIBs) are increasingly prominent in the energy storage system due to their high energy density and cost-effectiveness. However, they face significant challenges, such as rapid capacity fading and structural instability during high-voltage operation cycles. Addressing these issues, numerous researchers have studied the enhancement of electrochemical performance through the coating of NCM cathode materials with substances like metal oxides, lithium composites, and polymers. Coating these cathode materials serves several critical functions: it acts as a protection barrier against electrolyte decomposition, mitigates the dissolution of transition metals, enhances the structural integrity of the electrode, and can even improve the ionic conductivity of the cathode. Ultimately, these improvements lead to better cycle stability, increased efficiency, and enhanced overall battery life, which are crucial for the advancement of NCM-based lithium-ion batteries in high-demand applications. So, this paper will review various cathode coating materials and examine the roles each plays in improving battery performance.

Novel Synthesis Method and Electrochemical Characteristics of Lithium Titanium Oxide as Anode Material for Lithium Secondary Battery

  • Kim Han-Joo;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.119-123
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. Li$_{4}$Ti$_{5}$O$_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here Li$_{4}$Ti$_{5}$O$_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed Li$_{4}$ Ti$_{5}$O$_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of Li$_{4}$ Ti$_{5}$O$_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\~$ 3.0 V. Furthermore, the crystalline structure of Li$_{4}$ Ti$_{5}$O$_{12}$ didn't transform during the lithium intercalation and deintercalation process.

리튬이온전지의 Smart Battery System (Smart Battery System of Lithium ion Batteries)

  • 김현수;문성인;윤문수;고병희;박상건;신동오;유성모;이승호
    • 전기화학회지
    • /
    • 제4권3호
    • /
    • pp.132-137
    • /
    • 2001
  • 최근 리튬이온전지를 채용한 노트북 PC의 수요는 계속 증가하고 있으며, 노트북 PC용 전지로는 잔존용량과 사용가능 시간을 정확하게 예측하며, 스스로 최적조건으로 충방전을 제어할 수 있는 SBP(smart battery pack)를 많이 채용하고 있다. SBP는 과충전, 과방전 및 과전류로부터 리튬이온전지의 안전성을 확보하기 위한 보호회로부 (protection IC)와 잔존용량 및 사용가능시간 등의 계산을 위한 지능회로부 (smart IC)로 구성되어있다. 보호회로는 충전 및 방전 FET를 이용하여 이상전류를 차단하며, SBS(smart battery system)는 system host, smart battery 및 smart battery charger로 구성되어 있다. 향후, SBP에 사용되는 IC는 저가이면서, 소비전류가 낮고, 소형화가 요구된다. 또한, microcomputer control type의 IC를 사용하고, 최적의 알고리즘을 개발하여 잔존용량 및 사용가능시간을 정확하게 예측할 필요가 있다. 이러한 SBS 기술은 노트북 PC 이외에도 전기자전거, 전기자동차, 전력저장용, 군사분야 등 광범위한 분야에서 사용될 것으로 예상된다.