• Title/Summary/Keyword: liquids oxides

Search Result 4, Processing Time 0.016 seconds

CLUSTER P-V CONTAINING SYSTEMS FOR THE DECREASING OF POLYMERIC MATERIAL COMBUSTION

  • Kodolov, V.I.;Bystrov, S.G.;Mikhailov, V.I.;Lipanov, A.M.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.104-111
    • /
    • 1997
  • Cluster systems are microcrystals of vanadiumoxided compounds such as Barium, Calcium or Sodium Metavanadates or Sodium Vanadium Bronze which are distributed into dimethyl- or diethylphosphites or microcrystals of vanadium oxides, for instance, vanadium oxide (+3), distributed into the methylphosphonic acid melted. During the interaction of vanadium compounds with the correspondent phosphororganic substances biue viscous liquids are formed. These liquids have paramagnetic properties. According to the UV and IR spectroscopic investigations as well as the results of EPR spectra the substances obtained consist of the nucleus containing 6 to 12 of vanadium atoms and the shell including ligands which are molecules of phosphites or methylphosphonic acid. Here every atom of vanadium interacts with four of phosphorus containing molecules. Sizes of the particles in these systems donot exceed 200 nm. Introduction of cluster systems (0,1 -0,3 % vanadium) into epoxy compositions before the introduction of curing agent - polyethylenepolyamine 6 -8 % leads to the acceleration of composition crosslinking and to the combustion decreasing: 1) Oxygen Index grows to 35: 2)mass losses during combustion decrease to 1-2%, 3) combustion time does not exceed 1 s; 4) the intumescence of material sample is being observed during the burner action as well as the foam coke formation.

  • PDF

Transient State Theory of Significant Liquid Structure Applied to Nitrogen Oxides (액체 구조의 천이상태이론의 질소산화물들에 대한 적용)

  • Kim, Sang-Hyung;Pak, Hyung-Suk;Kim, Kak-Choong;Chang, Sei-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.105-110
    • /
    • 1967
  • The transient state theory of significant liquid structure is applied to nitrous oxide and nitrogen tetroxide. The partition functions for the two liquids are derived according to the transient state theory. The various thermodynamic properties; such as, molar volumes, vapor pressures, entropies of vaporization, and critical point properties agree well with the experimental values.

  • PDF

Water Model Experiments of the Mixing Behavior of Polypropylene Particles by Vortex Stirrer (와류식 교반기를 이용한 폴리프로필렌 입자의 혼합 거동에 대한 수모델 연구)

  • Jung, Jaeyong;Lee, Joonho;Lee, Hyoungchul;Ki, Joonseong;Hwang, Jinill
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • Water model experiments were carried out to understand the mixing behavior of reducing agents in molten slag through vortex stirrer, which makes use of a gravitational energy to mix reducing agent in the molten slag without imparting artificial energy. At a water flow rate of 6 L/min vortex was not generated, and a stable vortex was formed when the water flow rate was 7 L/min or higher with the present experimental apparatus. Water level increased linearly with increasing the water flow rate. In the upper vortex region, the vertical and horizontal velocities slightly decreased with increasing the water flow rate, whereas those in the lower vortex region increased remarkably. Accordingly, strong mixing behavior was obtained in the lower vortex region. Owing to the strong centrifugal force, particles move downwards with approaching the funnel wall. When 40 grams of polypropylene particles added to the lower vortex, they were instantaneously mixed well.

Development of High-performance Supercapacitors Based on MnO2/Functionalized Graphene Nanocomposites (망간산화물/기능화된 그래핀 나노복합체에 기반한 고성능 슈퍼커패시터 개발)

  • Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.439-443
    • /
    • 2016
  • In this report, $MnO_2$ nanoparticle-deposited functionalized graphene sheets were prepared and their superior electrochemical performances were demonstrated by cyclic voltammetry, galvanostatic charge-discharge, and impedance analysis. Ionic liquids were employed to functionalize the surface of reduced graphene oxides (RGOs), leading to prevention of the aggregation of RGO sheets and abundant growth sites for deposition of $MnO_2$ nanoparticles. As-prepared $MnO_2/RGO$ nanocomposites were characterized using scanning electron microscope, transition electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. Electrochemical properties of $MnO_2/RGO$ electrode were evaluated using $Na_2SO_4$ electrolyte under a three-electrode system. The $MnO_2/RGO$ electrode showed a high specific capacitance (251 F/g), a high rate capability (80.5% retention), and long-term stability (93.6% retention).