• Title/Summary/Keyword: liquid-state fermentation

Search Result 30, Processing Time 0.021 seconds

Production of Pigment by Liquid Culture and Monacolin K in Red Mold Rice by Solid State Fermentation of Monascus ruber Strains (Monascus ruber의 액체배양을 통한 색소 생산 및 고체발효를 통한 홍국쌀의 monacolin K 생산 특성)

  • Park, Youn-Je
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.400-407
    • /
    • 2013
  • The growth characteristics and production of color pigments by Monascus strains were investigated during liquid culture, and production of monacolin K in red mold rice was carried out by solid state fermentation. Four different Monascus ruber strains were cultured in potato dextrose yeast extract broth (PDYB) media at $25^{\circ}C$ for 15 days. The high producing strain for red pigment was not corresponded to the strain for yellow pigment. Production of red pigment was high in the strain causing the fast pH change in culture broth. Production of monacolin K in red mold rice by solid state fermentation was influenced by a combination of wet cell weight and spore density in inoculum by liquid culture. Most strains showed the high production of monacolin K in red mold rice, when submerged fermentation was carried out for 5 days as inoculum for solid state fermentation. These results suggest that submerged fermentation period of inoculum have an effect on the production of monacolin K in red mold rice by solid state fermentation, and monacolin K in red mold rice could be increased by controlling the condition of submerged fermentation for inoculum.

Comparison of Liquid and Solid-State Fermentation Processes for the Production of Enzymes and Beta-Glucan from Hulled Barley

  • Lee, Se Yeon;Ra, Chae Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.317-323
    • /
    • 2022
  • Solid-state fermentation using hulled barley was carried out to produce enzymes and β-glucan. The one-factor-at-a-time experiments were carried out to determine the optimal composition of the basal medium. The modified synthetic medium composition in liquid-state fermentation was determined to be 70 g/l hulled barley, 0 g/l rice bran, 5 g/l soytone, and 6 g/l ascorbic acid. Optimal pretreatment conditions of hulled barley by solid-state fermentation were evaluated in terms of maximum production of fungal biomass, amylase, protease, and β-glucan, which were 1.26 mg/g, 31310.34 U/g, 2614.95 U/g, and 14.6% (w/w), respectively, at 60 min of pretreatment condition. Thus, the solid-state fermentation process was found to enhance the overall fermentation yields of hulled barley to produce high amounts of enzymes and β-glucan.

Optimization of Extraction Parameters for Keratinase Recovery from Fermented Feather under Solid State Fermentation by Streptomyces sp. NRC 13S

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.3
    • /
    • pp.149-156
    • /
    • 2012
  • The effects of solvent type and concentration, solid/liquid ratio, extraction time and repeated extraction on recovery of keratinase from solid-state fermentation (SSF) of chicken feather by a local Streptomyces sp. NRC 13S were investigated in order to establish the experimental conditions for keratinase yield. Among solvents tested, 0.5% (v/v) glycerol was the best. Box-Behnken design was used to investigate the effect of relevant variables on keratinase recovery. The factors investigated were solid/liquid ratio (1:1.66-1:6.66 g/mL), glycerol concentration (0.5-5% v/v) and repeated extraction (1-5 cycle). The results showed that the maximum recovery of keratinase (6933.3 U/gfs) was obtained using 0.5 (v/v) glycerol as extracting solvent, in a solid/liquid ratio of 1:5 and three extraction cycles.

Enzymatic Activity and Amino Acids Production of Predominant Fungi from Traditional Meju during Soybean Fermentation

  • Dong Hyun Kim;Byung Hee Chun;Jae-Jung Lee;Oh Cheol Kim;Jiye Hyun;Dong Min Han;Che Ok Jeon;Sang Hun Lee;Sang-Han Lee;Yong-Ho Choi;Seung-Beom Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.654-662
    • /
    • 2024
  • To investigate the effect of the predominant fungal species from Korean traditional meju and doenjang on soybean fermentation, the enzymatic activity and amino acid production of twenty-two fungal strains were assessed through solid- and liquid-state soybean fermentation. Enzymatic activity analyses of solid-state fermented soybeans revealed different enzyme activities involving protease, leucine aminopeptidase (LAP), carboxypeptidase (CaP), glutaminase, γ-glutamyl transferase (GGT), and amylase, depending on the fungal species. These enzymatic activities significantly affected the amino acid profile throughout liquid-state fermentation. Strains belonging to Mucoromycota, including Lichtheimia, Mucor, Rhizomucor, and Rhizopus, produced smaller amounts of total amino acids and umami-producing amino acids, such as glutamic acid and aspartic acid, than strains belonging to Aspergillus subgenus circumdati. The genera Penicillium and Scopulariopsis produced large amounts of total amino acids and glutamic acid, suggesting that these genera play an essential role in producing umami and kokumi tastes in fermented soybean products. Strains belonging to Aspergillus subgenus circumdati, including A. oryzae, showed the highest amino acid content, including glutamic acid, suggesting the potential benefits of A. oryzae as a starter for soybean fermentation. This study showed the potential of traditional meju strains as starters for soybean fermentation. However, further analysis of processes such as the production of G-peptide for kokumi taste and volatile compounds for flavor and safety is needed.

Coproduction of Enzymes and Beta-Glucan by Aspergillus oryzae Using Solid-State Fermentation of Brown Rice

  • Ji, Su Bin;Ra, Chae Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.1028-1034
    • /
    • 2021
  • The effect of medium composition on enzyme and β-glucan production by Aspergillus oryzae KCCM 12698 was investigated. Brown rice, rice bran, nitrogen, and ascorbic acid are key components of the synthetic medium used in liquid-state fermentation. To determine the optimal concentrations of these components for enzyme and β-glucan production, we conducted one factor at a time experiments, which showed that the optimal concentrations were 30 g/l brown rice, 30 g/l rice bran, 10 g/l soytone, and 3 g/l ascorbic acid. Pretreatment of brown rice for 60 min prior to inoculation enhanced fungal biomass, while increasing the production of enzymes and β-glucan using solid-state fermentation. Maximum fungal biomass of 0.76 mg/g, amylase (26,551.03 U/g), protease (1,340.50 U/g), and β-glucan at 9.34% (w/w) were obtained during fermentation. Therefore, solid-state fermentation of brown rice is a process that could enhance yield and overall production of enzymes and β-glucan for use in various applications.

Effect of Abiotic Factors on Fumosorinone Production from Cordyceps fumosorosea via Solid-State Fermentation

  • Tahir Khan;Dong-Hai Hou;Jin-Na Zhou;Yin-Long Yang;Hong Yu
    • Mycobiology
    • /
    • v.51 no.3
    • /
    • pp.157-163
    • /
    • 2023
  • Cordyceps fumosorosea is an important species in the genus of Cordyceps, containing a variety of bioactive compounds, including fumosorinone (FU). This study was a ground-breaking assessment of FU levels in liquid and solid cultures. The present study focused on the impacts of solid-state fermentation (SSF) using solid substrates (wheat, oat, and rice), as well as the effects of fermentation parameters (pH, temperature, and incubation period), on the generation of FU. All the fermentation parameters had significant effects on the synthesis of FU. In a study of 25 ℃, 5.5 pH, and 21 days of incubation period combinations calculated -to give maximal FU production, it was found that the optimal values were 25 ℃, 5.5 pH, and 21 days, respectively. In a solid substrate medium culture, FU could be produced from SSF. At 30 days, a medium composed of rice yielded the most FU (798.50 mg/L), followed by a medium composed of wheat and oats (640.50 and 450.50 mg/L), respectively. An efficient method for increasing FU production on a large scale could be found in this approach. The results of this study might have multiple applications in different industrial fermentation processes.

Extraction of β-glucosidase from Bagasse Fermented by Mixed Culture under Solid State Fermentation

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.3
    • /
    • pp.197-203
    • /
    • 2014
  • Various parameters such as solvent selection, concentration, solid/liquid ratio, soaking time, temperature, stationary, shaking conditions, and repeated extractions were investigated in order to determine the optimum extraction conditions of ${\beta}$-glucosidase from bagasse fermented by mixed culture of Aspergillus niger NRC 7A and Aspergillus oryzae NRRL 447. Among various solvents tested, non ionic detergents gave the best results than the inorganic or organic salt solutions and distilled water. The optimum conditions for extraction of ${\beta}$-glucosidase were 30 min soaking time at $40^{\circ}C$ under shaking condition at 150 rpm, with solid/liquid ratio 1:15 (w/v), which yielded $2882.74{\pm}95.52U/g$ fermented culture (g fc) of enzyme activity. With repeated washes under the above optimum conditions, the results showed that enzyme extracted in the $1^{st}$ and $2^{nd}$ washes represents about 90% of the total activity.

Carbon Source Affects Synthesis, Structures, and Activities of Mycelial Polysaccharides from Medicinal Fungus Inonotus obliquus

  • He, Huihui;Li, Yingying;Fang, Mingyue;Li, Tiantian;Liang, Yunxiang;Mei, Yuxia
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.855-866
    • /
    • 2021
  • The effects of various carbon sources on mycelial growth and polysaccharide synthesis of the medicinal fungus Inonotus obliquus in liquid fermentation were investigated. After 12-d fermentation, mycelial biomass, polysaccharide yield, and polysaccharide content were significantly higher in Glc+Lac group (glucose and lactose used as combined carbon source) than in other groups. Crude polysaccharides (CIOPs) and the derivative neutral polysaccharides (NIOPs) were obtained from mycelia fermented using Glc, fructose (Fru), Lac, or Glc+Lac as carbon source. Molecular weights of four NIOPs (termed as NIOPG, NIOPF, NIOPL, and NIOPGL) were respectively 780.90, 1105.00, 25.32, and 10.28 kDa. Monosaccharide composition analyses revealed that NIOPs were composed of Glc, Man, and Gal at different molar ratios. The NIOPs were classified as α-type heteropolysaccharides with 1→2, 1→3, 1→4, 1→6 linkages in differing proportions. In in vitro cell proliferation assays, viability of RAW264.7 macrophages was more strongly enhanced by NIOPL or NIOPGL than by NIOPG or NIOPF, and proliferation of HeLa or S180 tumor cells was more strongly inhibited by NIOPG or NIOPGL than by NIOPF or NIOPL, indicating that immune-enhancing and anti-tumor activities of NIOPs were substantially affected by carbon source. qRT-PCR analysis revealed that expression levels of phosphoglucose isomerase (PGI) and UDP-Glc 4-epimerase (UGE), two key genes involved in polysaccharide synthesis, varied depending on carbon source. Our findings, taken together, clearly demonstrate that carbon source plays an essential role in determining structure and activities of I. obliquus polysaccharides by regulating expression of key genes in polysaccharide biosynthetic pathway.

Itaconic and Fumaric Acid Production from Biomass Hydrolysates by Aspergillus Strains

  • Jimenez-Quero, A.;Pollet, E.;Zhao, M.;Marchioni, E.;Averous, L.;Phalip, V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1557-1565
    • /
    • 2016
  • Itaconic acid (IA) is a dicarboxylic acid included in the US Department of Energy's (DOE) 2004 list of the most promising chemical platforms derived from sugars. IA is produced industrially using liquid-state fermentation (LSF) by Aspergillus terreus with glucose as the carbon source. To utilize IA production in renewable resource-based biorefinery, the present study investigated the use of lignocellulosic biomass as a carbon source for LSF. We also investigated the production of fumaric acid (FA), which is also on the DOE's list. FA is a primary metabolite, whereas IA is a secondary metabolite and requires the enzyme cis-aconitate decarboxylase for its production. Two lignocellulosic biomasses (wheat bran and corn cobs) were tested for fungal fermentation. Liquid hydrolysates obtained after acid or enzymatic treatment were used in LSF. We show that each treatment resulted in different concentrations of sugars, metals, or inhibitors. Furthermore, different acid yields (IA and FA) were obtained depending on which of the four Aspergillus strains tested were employed. The maximum FA yield was obtained when A. terreus was used for LSF of corn cob hydrolysate (1.9% total glucose); whereas an IA yield of 0.14% was obtained by LSF of corn cob hydrolysates by A. oryzae.

Effects of Feeding Solid-state Fermented Rapeseed Meal on Performance, Nutrient Digestibility, Intestinal Ecology and Intestinal Morphology of Broiler Chickens

  • Chiang, G.;Lu, W.Q.;Piao, X.S.;Hu, J.K.;Gong, L.M.;Thacker, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.2
    • /
    • pp.263-271
    • /
    • 2010
  • This trial was conducted to determine the effects of feeding a diet containing solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. A mixed liquid culture, containing approximately 5 log cfu/ml Lactobacillus fermentum, Enterococcus faecium, Saccharomyces cerevisae and Bacillus subtilis was prepared in a 1:1:1:1 ratio. A basal substrate (BS) containing 75% rapeseed, 24% wheat bran and 1% brown sugar was mixed with the liquid culture in a ratio of 10:3. Over the 30-day fermentation, isothiocyanates were reduced from 119.6 to 14.7 mmol/kg. A total of 168, day-old male Arbor Acres broiler chicks were assigned to one of three dietary treatments including a corn-soybean meal based control diet as well as two experimental diets in which the control diet was supplemented with 10% of the BS containing unfermented rapeseed meal or 10% of the BS containing rapeseed meal subjected to solid state fermentation. There were 8 pens per treatment and 7 birds per pen. From days 19-21 and days 40-42, uncontaminated excreta were collected from each pen for digestibility determinations. In addition, digesta from the colon and ceca were collected to determine the number of lactobacilli, enterobacteria and total aerobes. The middle sections of the duodenum, jejunum, and ileum were collected for intestinal morphology. Over the entire experimental period (d 1-42), the weight gain and feed conversion of birds fed fermented rapeseed meal were superior (p<0.05) to that of birds fed nonfermented rapeseed meal and did not differ from the soybean control. On day 42, birds fed fermented rapeseed meal had higher (p<0.05) total tract apparent digestibility coefficients for dry matter, energy, and calcium than birds fed non-fermented rapeseed meal. Colon and ceca digesta from broilers fed the fermented feed had higher (p<0.05) lactobacilli counts than birds fed the control and non-fermented rapeseed meal diets on day 21 and 42. Fermentation also improved (p<0.05) villus height and the villus height:crypt depth ratio in the ileum and jejunum on day 21 and 42. The results indicate that solid-state fermentation of rapeseed meal enhanced performance and improved the intestinal morphology of broilers and may allow greater quantities of rapeseed meal to be fed to broilers potentially reducing the cost of broiler production.