• 제목/요약/키워드: liquid-phase

검색결과 4,285건 처리시간 0.029초

고분자전해질형연료전지의 가스 채널 최적화를 위한 수치적 연구 (II) - 가스 채널 치수가 온도와 액체포화 분포에 미치는 영향성 - (Numerical Study of Land/Channel Flow-Field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (II) - The Effects of Land/Channel Flow-Field on Temperature and Liquid Saturation Distributions -)

  • 주현철;남진무
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.688-698
    • /
    • 2009
  • Using the multi-dimensional, multi-phase, nonisothermal Polymer Electrolyte Fuel Cell (PEFC) model presented in Part I, the effects of land/channel flow-field on temperature and liquid saturation distributions inside PEFCs are investigated in Part II. The focus is placed on exploring the coupled water transport and heat transfer phenomena within the nonisothermal and two-phase zone existing in the diffusion media (DM) of PEFCs. Numerical simulations are performed varying the land and channel widths and simulation results reveal that the water profile and temperature rise inside PEFCs are considerably altered by changing the land and channel widths, which indicates that oxygen supply and heat removal from the channel to the land regions and liquid water removal from the land toward the gas channels are key factors in determining the water and temperature distributions inside PEFCs. In addition, the adverse liquid saturation gradient along the thru-plane direction is predicted near the land regions by the numerical model, which is due to the vapor-phase diffusion driven by the temperature gradient in the nonisothermal two-phase DM where water evaporates at the hotter catalyst layer, diffuses as a vapor form and then condenses on the cooler land region. Therefore, the vapor phase diffusion exacerbates DM flooding near the land region, while it alleviates DM flooding near the gas channel.

Phase Evolution, Microstructure and Microwave Dielectric Properties of Zn1.9-2xLixAlxSi1.05O4 Ceramics

  • Kim, Yun-Han;Kim, Shin;Jeong, Seong-Min;Kim, So-Jung;Yoon, Sang-Ok
    • 한국세라믹학회지
    • /
    • 제52권3호
    • /
    • pp.215-220
    • /
    • 2015
  • Phase evolution, microstructure, and microwave dielectric properties of $Li_2O$ and $Al_2O_3$ doped $Zn_{1.9}Si_{1.05}O_4$, i.e., $Zn_{1.9-2x}Li_xAl_x-Si_{1.05}O_4$, ceramics (x = 0.02 ~ 0.10) were investigated. The ceramics were densified by $SiO_2$-rich liquid phase composed of the Li-Al-Si-O system, indicating that doped Li and Al contributed to the formation of the liquid. As the secondary phase, ${\beta}$-spodumene solid solution with the composition of $LiAlSi_3O_8$ was precipitated from the liquid during the cooling process. The dense ceramics were obtained for the specimens of $$x{\geq_-}0.06$$ showing the rapid densification above $1000^{\circ}C$, implying that a certain amount of liquid is necessary to densify. The specimen of x = 0.06 sintered at $1050^{\circ}C$ exhibited good microwave dielectric properties; the dielectric constant and the quality factor ($Q{\times}f_0$) were 6.4 and 11,213 GHz, respectively.

Thermodynamic Properties of the Solute Transfer from the Aqueous Acetonitrile Mobile Phase to the Stationary Phase Monitored by HPLC

  • 정원조;김지연;구윤모
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권1호
    • /
    • pp.105-109
    • /
    • 2000
  • High-performance liquid chromatography is suitable for getting thermodynamic information about solute-solvent interactions. We used a squalane impregnated $C_{18}$ phase as a presumably bulk-like stationary phase to secure a simple partition mechanism for solute retention in reversed phase liquid chromatographic system. We measured retention data of some selected solutes (benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, phenol, benzylalcohol, phenethylalcohol, benzylacetone, acetophenone, benzonitrile, benzylcyanide) at 25, 30, 35, 40, 45, and 50 $^{\circ}C$ in 30/70, 40/60, 50/50, 60/40 and 70/30 (v/v%) acetonitrile/water eluents. The van't Hoff plots were nicely linear, thus we calculated dependable thermodynamic values such as enthalpies and entropies of solute transfer from the mobile phase to the stationary phase based on more than four retention measurements on different days (or weeks). We found that the cavity formation effect was the major factor in solute distribution between the mobile and stationary phases in the system studied here. Our data were com-pared with some relevant literature data.

A Modified Adsorption Model for Retention of Nonpolar Solutes in Reversed Phase Liquid Chromatography

  • Cheong Won Jo
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권1호
    • /
    • pp.15-20
    • /
    • 1994
  • The adsorption model in reversed phase liquid chromatography has been critically examined. It has been found that use of the Everett type surface activity coefficient for the solute in the stationary phase is not useful to study the retention characteristics of a nonpolar solute. We suggest a modified model. In this model it is assumed that the displaced modifier molecules from the surface monolayer do not transfer into the bulk mobile phase but stick to the nonpolar solute which has displaced them. In addition, we prefer to use an apparent stationary phase activity coefficient of the soluie instead of the Everett type activity coefficient. This modified adsorption model well explains the mobile and stationary phase effects on the solute retention upon variation of mobile phase composition.

Study of Retention of Mono-Substituted Phenols in Reversed-Phase Liquid Chromatography Based on the Linear Solvation Energy Relationships Using the Solvatochromic Parameters for Mobile Phases, ${\pi}_m^{\ast}, {\alpha}_m$ and ${\beta}_m$

  • Park, Jung-Hag;Jang, Myung-Duk;Kim, Sang-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권4호
    • /
    • pp.297-302
    • /
    • 1990
  • Retention of mono-substituted phenols in reversed-phase liquid chromatography has been studied based on the linear solvation energy relationships using the solvatochromic mobile phase parameters, ${\pi}_m^{\ast}, {\alpha}_m$ and ${\beta}_m$. It has been observed that retention behavior of phenols in RPLC were well represented by regression equations vs. solvatochromic mobile phase parameters even though the equations may be incomplete due to lack of an explicit cavity term. Dependence of retention of monosubstituted phenols on the mobile phase properties were varied depending on the type of the organic cosolvent in the mobile phase, e.g., ${\beta}_m$ and {\alpha}_m$ in methanol-water system, but ${\pi}_m^{\ast} and ${\beta}_m$ in THF-water system. It has been suggested that retention of phenols in methanol-water system is controlled by the solvophobicity of the mobile phase.

Recent trends in studies of biomolecular phase separation

  • Kim, Chan-Geun;Hwang, Da-Eun;Kumar, Rajeev;Chung, Min;Eom, Yu-Gon;Kim, Hyunji;Koo, Da-Hyun;Choi, Jeong-Mo
    • BMB Reports
    • /
    • 제55권8호
    • /
    • pp.363-369
    • /
    • 2022
  • Biomolecular phase separation has recently attracted broad interest, due to its role in the spatiotemporal compartmentalization of living cells. It governs the formation, regulation, and dissociation of biomolecular condensates, which play multiple roles in vivo, from activating specific biochemical reactions to organizing chromatin. Interestingly, biomolecular phase separation seems to be a mainly passive process, which can be explained by relatively simple physical principles and reproduced in vitro with a minimal set of components. This Mini review focuses on our current understanding of the fundamental principles of biomolecular phase separation and the recent progress in the research on this topic.

Effect of Cubic Liquid Crystalline Systems on Skin Localization of Oregonin and Hirsutanonol

  • Im, Tae-Jong;Kang, Myung-Joo;Seo, Dong-Woo;Lee, Jae-Hwi
    • Biomolecules & Therapeutics
    • /
    • 제16권3호
    • /
    • pp.226-230
    • /
    • 2008
  • Monoolein-based cubic liquid crystalline systems were formulated for the local delivery of oregonin and hirsutanonol for the treatment of atopic dermatitis. The liquid crystalline phase and its nanodispersion containing drugs were prepared. The skin permeation and deposition properties of the drugs were examined in normal and delipidized rat skin. The proportion of oregonin (%) deposited in normal skin after topical administration of the drugs in the form of aqueous solution, cubic phase or cubic nanodispersions were $1.53\;{\pm}\;0.46$, $3.62\;{\pm}\;0.17$ and $5.13\;{\pm}\;0.73$, and those of hirsutanonol were $2.46\;{\pm}\;0.02$, $5.44\;{\pm}\;0.27$ and $17.28\;{\pm}\;2.19$, respectively. The greater lipophilicity and thus greater skin affinity of hirsutanonol than oregonin contributed the greater amount of skin deposition. The monoolein-based liquid crystalline phases significantly increased the amount of both drugs permeated and deposited. Approximately 3.2, 2.1 and 3.0 times greater amount of oregonin, and 3.4, 2.1 and 2.2 times greater amount of hirsutanonol were deposited in delipidized skin after administration of each drug in the form of aqueous solution, cubic phase and cubic nanodispersions system, respectively, because of lowered barrier function of the delipidized skin. In this study, the effects of drug property, vehicles type and skin condition on skin deposition and permeation properties of drug were examined and concluded that monoolein-based liquid crystalline systems would be a promising formulation for the local delivery of drugs.

슬러그 2상유동에서 전류형식 전자기유량계 수치적 신호예측 및 보정 (Numerical Signal Prediction and Calibration Using the Theory of a Current-Type Electromagnetic Flowmeter for Two-Phase Slug Flow)

  • 안예찬;오병도;김종록;김무환;강덕홍
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.671-686
    • /
    • 2005
  • The transient nature and complex geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et al.). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. The velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method, and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for simulating slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are proposed for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

자동화된 LPME(Liquid Phase Microextraction)장치를 이용한 다성분 농약분석 (Multicomponent pesticides analysis by automated liquid phase microextraction)

  • 명승운;정홍래
    • 분석과학
    • /
    • 제18권3호
    • /
    • pp.224-231
    • /
    • 2005
  • 잔류농약 분석에 전통적으로 사용되는 액체-액체 추출법과 액체-고체 추출법의 여러 가지 단점을 극복하고 기존의 낮은 정밀도와 저조한 추출효과를 보완하기위해 자동화된 장치를 이용한 액체상 극미량 추출법(Liquid Phase Microextraction : LPME)을 사용하였으며 이에 대한 최적화 조건을 설정하였다. 대상농약은 demeton-S-methyl, diazinon, parathion, fenitrothion, EPN등 5종이었으며 채소 시료 중에서 추출하여 HP 6890 GC/NPD를 사용하여 분석하였다. 자동화된 LPME를 이용한 최적의 추출조건은 pH 3, 염의 농도 $100{\mu}g/mL$이었으며 검량선을 작성하였을 때 $0.2{\sim}10{\mu}g/g$ 범위에서 $R^2=0.9921$ 이상 직선상의 상관관계를 나타내었고 $5{\mu}g/g$ 농도에서 demeton-S-methyl은 7.7%, diazinon은 9.8%, parathion은 7.8%, fenitrothion는 9.7%, EPN은 8.2%의 상대표준편차를 나타내었고 정확도는 demeton-S-methyl는 12.7%, diazinon는 7.8%, parathion는 10.4%, fenitrothion는 -6.7%, EPN은 -0.7%로 좋은 값을 나타내었다.

고/액 계면에서의 Peltier 열 측정 및 결정성장에의 응용 II : 측정과 응용 (Measurement of Peltier Heat at the Solid/Liquid Interface and Its Application to Crystal Growth II : Measurement and Application)

  • 김일호;장경욱;이동희
    • 한국재료학회지
    • /
    • 제9권11호
    • /
    • pp.1112-1116
    • /
    • 1999
  • $\textrm{Bi}_{2}\textrm{Te}_{3}$의 고/액 계면을 통하여 전류밀도와 방향을 달리 하면서 통전시켰을 때 발생하는 고상, 액상 및 고/액 계면에서의 미소 온도변화를 측정하였다. 이 냉각(가열) 효과는 전류밀도, 통전방향 및 시간에 따라 다르게 나타났으며, 온도변화에 미치는 Peltier 열, Thomson 열 및 Joule 열의 영향을 이론 및 실험에 의해 각각 분류하였다. $\textrm{Bi}_{2}\textrm{Te}_{3}$의 고/액상간의 Peltier 계수는 -1.10$\times\textrm{10}^{-1}$V이었으며, 고상과 액상의 Thomson 계수는 각각 7.31\times\textrm{10}^{-4}V/K와 5.77\times\textrm{10}^{-5}V/K이었다. 직류를 통전하면서 Bi$_2$Te$_3$결정을 성장한 결과, 고상에서 액상으로 통전한 경우, Peltier 냉각에 의한 온도구배의 상승으로 방향성이 향상된 결정을 얻을 수 있었지만, 전류의 방향을 반대로 하면, 결정성 향상에 별 도움을 주지 못하였다.

  • PDF