• Title/Summary/Keyword: liquid segregation

Search Result 80, Processing Time 0.025 seconds

An extended analytical solution for the mixture solidification problem (혼합물의 응고문제에 대한 확장된 해석해)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.184-192
    • /
    • 1998
  • This paper deals with an extended analytical solution for the mixture solidification problem, in which temperature is inherently coupled with the solute transport due to the presence of volume contraction induced flow. A new exact solution to the energy equation accounting for the convection effect in the melt is successfully derived, which allows the present analysis to cover a high initial superheating. Difference in properties between the solid and liquid phases is rigorously incorporated into the model equations in the solid fraction weighted form. Taking advantage of linearized correction factors, a systematic and easy-to-implement algorithm for determining the solidus and liquidus positions is introduced, which proves not only to converge stably but also to be very efficient. For a specific case, the present results show excellent agreements with the existing solution. The effect of convection in the melt becomes appreciable with increasing the initial superheating. It is revealed that variable properties in the mushy region significantly affect the solidification behaviors. The present study is also capable of resolving the interaction between microsegregation and macrosegregation.

Development, validation and implementation of multiple radioactive particle tracking technique

  • Mehul S. Vesvikar;Thaar M. Aljuwaya;Mahmoud M. Taha;Muthanna H. Al-Dahhan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4213-4227
    • /
    • 2023
  • Computer Automated Radioactive Particle Tracking (CARPT) technique has been successfully utilized to measure the velocity profiles and mixing parameters in different multiphase flow systems where a single radioactive tracer is used to track the tagged phase. However, many industrial processes use a wide range of particles with different physical properties where solid particles could vary in size, shape and density. For application in such systems, the capability of current single tracer CARPT can be advanced to track more than one particle simultaneously. Tracking multiple particles will thus enable to track the motion of particles of different size shape and density, determine segregation of particles and probing particle interactions. In this work, a newly developed Multiple Radioactive Particle Tracking technique (M-RPT) used to track two different radioactive tracers is demonstrated. The M-RPT electronics was developed that can differentiate between gamma counts obtained from the different radioactive tracers on the basis of their gamma energy peak. The M-RPT technique was validated by tracking two stationary and moving particles (Sc-46 and Co-60) simultaneously. Finally, M-RPT was successfully implemented to track two phases, solid and liquid, simultaneously in three phase slurry bubble column reactors.

Effect of Re and Ru Addition on the Solidification and Solute Redistribution Behaviors of Ni-Base Superalloys (니켈계 초내열합금의 응고 및 용질원소의 편석 거동에 미치는 레늄 및 루테늄 첨가의 영향)

  • Seo, Seong-Moon;Jeong, Hi-Won;Lee, Je-Hyun;Yoo, Young-Soo;Jo, Chang-Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.882-892
    • /
    • 2011
  • The influence of rhenium (Re) and ruthenium (Ru) addition on the solidification and solute redistribution behaviors in advanced experimental Ni-base superalloys has been investigated. A series of model alloys with different levels of Re and Ru were designed based on the composition of Ni-6Al-8Ta and were prepared by vacuum arc melting of pure metallic elements. In order to identify the influence of Re and Ru addition on the thermo-physical properties, differential scanning calorimetry analyses were carried out. The results showed that Re addition marginally increases the liquidus temperature of the alloy. However, the ${\gamma}^{\prime}$ solvus was significantly increased at a rate of $8.2^{\circ}C/wt.%$ by the addition of Re. Ru addition, on the other hand, displayed a much weaker effect on the thermo-physical properties or even no effect at all. The microsegregation behavior of solute elements was also quantitatively estimated by an electron probe microanalysis on a sample quenched during directional solidification of primary ${\gamma}$ with the planar solid/liquid interface. It was found that increasing the Re content gradually increases the microsegregation tendency of Re into the dendritic core and ${\gamma}^{\prime}$ forming elements, such as Al and Ta, into the interdendritic area. The strongest effect of Ru addition was found to be Re segregation. Increasing the Ru content up to 6 wt.% significantly alleviated the microsegregation of Re, which resulted in a decrease of Re accumulation in the dendritic core. The influence of Ru on the microstructural stability toward the topologically close-packed phase formation was discussed based on Scheil type calculations with experimentally determined microsegregation results.

Defects analysis of RE : YAG (RE = Nd3+, Er3+) single crystal synthesized by Czochralski method (Czochralski법으로 성장된 RE : YAG(RE = Nd3+, Er3+) 단결정의 결함분석)

  • Park, Cheong Ho;Joo, Young Jun;Kim, Hye Young;Shim, Jang Bo;Kim, Cheol Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • RE : YAG ($RE=Nd^{3+}$, $Er^{3+}$) single crystals are laser diodes and generally grown by Czochralski method with controlling the various growth parameter. Since the defects occurred by temperature gradient or the rotation speed of solid-liquid growth interface act as the decline of crystal optical property during the growth procedure, crystalline quality improvement via defects analysis is necessary. The etch pit density (EPD) analysis was used to confirm the surface defect of grown RE : YAG single crystal and to select the area of transmission electron microscopy (TEM) analysis. Defects in the specimen produced by tripod polishing method such as buckling, rod shaped, bend contours by internal stress, segregation and others were observed by using 200 kV TEM and 300 kV FE-TEM.

A Study on Microstructure Formation during Directional Solidification of a Hypoeutectic Al-11.3Si-3.5Cu alloy (아공정 Al-11.3Si-3.5Cu 합금의 응고조직 형성거동에 관한 연구)

  • Seo, Heesik;Gu, Jiho;Park, Kyungmi;Lee, Jeongseok;Lee, Jehyun;Chung, Wonsub
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.897-905
    • /
    • 2012
  • Directional solidification experiments were carried out in a hypoeutectic Al-11.3Si-3.5Cu system to investigate the microstructural evolution with the solidification rate. At a fixed temperature gradient, a dendritic microstructure was observed at a constant speed of more than $25{\mu}ms^{-1}$, a cellular interface developed at $5{\mu}ms^{-1}$ and the growth rate of $0.5{\mu}ms^{-1}$ led to the stability of the planar interface. The results revealed that primary silicon phases formed among cells, even though the studied Al-Si alloy system formed the composition within a hypoeutectic silicon composition. This suggests that the liquid concentration among cells during solidification reached a higher concentration, i.e., the eutectic concentration. It is, however, interesting that primary silicon phases did not form during a dendritic growth of more than $25{\mu}ms^{-1}$. These experimental observations are explained using the theoretical models on the interface temperatures.

Investigating the Effect of Homogenization Heat Treatment on the Microstructure and Texture of Magnesium Alloy Sheet Manufactured via Twin Roll Casting (트윈롤 주조법으로 제조된 마그네슘합금 판재의 균질화 열처리에 따른 미세조직 및 집합조직 발달)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.122-129
    • /
    • 2021
  • This study focuses on the microstructural development of 99% magnesium alloy sheet manufactured using twin roll casting (TRC) process. Herein, a plate with a thickness of 5 mm was manufactured using the TRC process, homogenization heat treatment was performed at 400℃ for 2-32 h, and finally, the change in microstructure was evaluated via optical microscopy and textural analysis. The results suggest that the plate manufactured using the TRC process was not destroyed and was successfully rolled into a plate. Microscopic observation suggested that the dendritic cast structure was arranged along the rolling direction. And the central layer of the rolled plate, where was present in a liquid state at the beginning of rolling, solidified later during the TRC process to form central segregation. The initial cast structure and inhomogeneous structure of the plate were recrystallized by homogenization heat treatment for only 2 h, and it was confirmed that the segregated part of the central layer became homogeneous and recrystallization occurred. Grain growth occurred as the heat treatment time increased, and secondary recrystallization occurred, wherein only some grains were grown. The textural analysis, which was conducted via X-ray diffraction, confirmed that the relatively weak basal plane texture developed using the TRC process was formed into a random texture after heat treatment.

Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • Ha, Yong Su;Jo, Chang Hyeon;Gang, Jeong Yun;Kim, Jong Do;Park, Hwa Sun
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)

Implementation of Low Frequency Welding Pre-heating System Using Induction Heating (유도가열 기법을 이용한 저주파 용접예열 시스템 구현)

  • Yang, Juyeong;Kim, Soochan;Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • Welding preheating means that the surface of the base material to which the metal is welded before the main welding is heated to a constant temperature. It prevents the cracks of the adjacent influences such as reduction of material hardening degree by controlling the cooling rate, suppression of segregation of impurities, prevention of thermal deformation, and moisture removal. For this reason, it is a necessary operation for high quality welding. Induction heating is an efficient heating method that converts electric energy into heat energy by applying electromagnetic induction phenomenon. Compared with combustion heat generated by gas and liquid, it is clean, stable, and economical as well as rapid heating. It can be heated regardless of the shape, depth and material of the heating body by modifying the shape of the frequency and the coil with a simple structure. In this paper, we implemented a low frequency welding preheating system using induction heating technique and observed the temperature changes of coil resistance, inductance and automotive transmission parts according to the height of each transmission in winding coil for three kinds of automotive transmission parts. We confirmed that the change of current is a very important factor in the low frequency heating.

The role of grain boundary modifier in $BaTiO_3$ system for PTCR device ($BaTiO_3$계 PTC 재료에서 입계 modifier의 역할)

  • Lee, Jun-Hyeong;Jo, Sang-Hui
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.553-561
    • /
    • 1993
  • In this study, thr effect of $Bi_2O_3$ and BN addition as grain boundary modifiers on sintering and electrical properties of semiconducting PTCR(Positive Temperature Coefficient of Resistivity) mate rial were analyzed using TMA, XRD and Complex Impedance Spectroscopy method. Bismut.h Ox~de and Boron Nitride were added to Y-doped $BaTiO_3$ respectively. Bismuth sesquioxide up to O.lmol%solubil~ ty limit of $Bi_2O_3$ in Y--$BaTiO_3$ ceramics-retarded densification and grain growth, and further addition mitigated these retardation effects. The resistivity at room temperature increased with increasing amount of $Bi_2O_3$ and thus decreased the PTCR effect, probably due to the $Bi_2O_3$ segregation on the grain boundaries. From the complex ~mpedance pattern, it is known that the grain boundary resisitivity is dominant on the whole resistivity of sample. In the result of applying the defect chemistry, $Bi^{3+} \;and \; Bi^[5+}$ are substituted for Ua and Ti site, respectively. Boron nitride decomposed and formed liquid phase among the $BaTiO_3$ grains. The decomposed com~ ponents made the second phase and existed the tr~ple juntion from the result of EPMA. From the complex impendencc pattern, the gram and grain boundary resistivity were small. The grain size increased with increasing BN contents, and decreased grain boundary resistivity enhanced the PTCR effect.

  • PDF

Study on the Storage Stability of Horse Fat in Jeju (제주산 말지방(Horse Fat)의 저장 안정성 향상에 관한 연구)

  • Kim, Mi Seon;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • Horse fat is known to be an effective ingredient in Asia, and the horse fat itself, which is mixed with other ingredients at the additive level, is often sold as a finished product. In this case, physical properties of the horse fat raw material are important. Many horse fats produced in Korea (Jeju) have low temperature stability, so if not stored at low temperatures, segregation may occur. In the case of Japanese horse fat, it is partially hydrogenated or is used the solid phase as the horse fat by separating the liquid phase and the solid phase that is harder and more stable than the horse fat of Jeju. In this study, the physical properties were tested to improve the temperature stability even without the partial hydrogenation process of Jeju horse fat. Various oil gelling agents were used in the study. Results confirmed that the physical properties of the hydroxystearic acid added Jeju horse fat were improved. In addition, stability evaluations at temperatures of 25 ℃, 40 ℃, 45 ℃ and flow behavior evaluations at temperatures of 25 ℃, 30 ℃, 40 ℃ were performed for Jeju horse fat with hydroxystearic acid, 100% Jeju horse fat, and 100% Japanese horse fat. Results showed that the Jeju horse fat improved in flow behavior by adding hydroxystearic acid similar to that of Japanese horse fat. In addition, when the crystal state was observed under a microscope, the thermal stability was improved by decreasing the size of the needle-type crystals with the addition of hydroxystearic acid. Jeju horse fat containing hydroxystearic acid was found to have no physical problems even when stored at room temperature for a long time.