• Title/Summary/Keyword: liquid phase building materials

Search Result 11, Processing Time 0.027 seconds

The Analysis of the Energy Saving Performances of Building Materials using Phase Change Materials (상변화물질을 적용한 건축자재의 에너지절약 가능성 분석)

  • An, Sang-Min;Hwang, Suck-Ho;Kim, Tae-Yeon;Leigh, Seung-Bok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.162-167
    • /
    • 2011
  • Thermal storage plays an important role in building energy saving, which is greatly assisted by the incorporation of latent heat storage in building materials. A phase change material is a substance with a high heat of fusion which, melting and solidifying at a certain temperature, can be storing and releasing large amount of energy. Heat is stored or released when the material changes from solid to liquid. Integration of building materials incorporating PCMs into the building envelope can result in increased efficiency of the built environment. The aim of this research is to identify thermal performance of PCMs impregnated building materials which is applied to interior of building such as gypsum and red clay. In order to analyze thermal performance of phase change materials, test-cell experiments and simulation analysis were carried out. The results show that micro-encapsulated PCM has an effect to maintain a constant indoor temperature using latent heat through the test-cell experiments. PCM wallboard makes it possible to reduce the fluctuation of room temperature and heating and cooling load by using EnergyPlus simulation program. Phase change material can store solar energy directly in buildings. Increasing the heat capacity of a building is capable of improving human comfort by decreasing the frequency of indoor air temperature swings so that the interior air temperature is closer to the desired temperature for a long period of time.

  • PDF

Life cycle assessment (LCA) of roof-waterproofing systems for reinforced concrete building

  • Ji, Sukwon;Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.367-377
    • /
    • 2014
  • In this study, we investigated a life cycle assessment (LCA) of six roof-waterproofing systems [asphalt (C1), synthetic polymer-based sheet (C2), improved asphalt (C3), liquid applied membrane (C4), Metal sheet with asphalt sheet (N1), and liquid applied membrane with asphalt sheet (N2)]for reinforced concrete building using an architectural model. To acquire accurate and realistic LCA results, minimum units of material compositions for life cycle inventory and real data for compositions of waterproofing materials were used. Considering only materials and energy demands for waterproofing systems per square meter, higher greenhouse gas (GHG) emissions could be generated in the order of C1 > N2 > C4 > N1 > C2 > C3 during construction phase. However, the order was changed to C1 > C4 > C3 > N2 > N1 > C2, when the actual architecture model was applied to the roof based on each specifications. When an entire life cycle including construction, maintenance, and deconstruction were considered, the amount of GHG emission was in the order of C4 > C1 > C3 > N2 > C2 > N1. Consequently, N1 was the most environmental-friendly waterproofing system producing the lowest GHG emission. GHG emissions from maintenance phase accounted for 71.4%~78.3% among whole life cycle.

Flexible Mold Production Process for Using the PCM (PCM을 활용한 가변형 몰드 제작 프로세스)

  • Kim, Taekoo;Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.272-273
    • /
    • 2014
  • Existing the free-form concrete segments (FCS) mold is produced by state of solid such as steel, wood, Styrofoam that can not be recycled. Using FCS mold result in delay on schedule and decrease of productivity because it consists of irregular curved variety and it requires more time than fixed mold. Thus, FCS mold should be developed which can reduce the costs and also it can be used as semipermanent. The aim of this study is to suggest of flexible mold production process for using the phase change materials(PCM). PCM is maintain that its solid state at low temperature but it changes phase to liquid state by heating. PCM is suitable material for flexible mold due to change of phase in relatively high temperature compare to other phase change materials such as water. Flexible mold is possible that reuse semi-permanently made by PCM. Thus, this study is proposed the process of flexible mold production for using the PCM. The study results will be used as the basic theory for studies on production and installation of FCS.

  • PDF

Study on the Retarding Mechanism and Strength Loss of Gypsum from Hydrolyzed Wheat Protein Retarder

  • Ding, Yi;Fang, Youchun;Fang, Hui;Zhang, Qicai;Zhang, Fengjun;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.28-32
    • /
    • 2015
  • In this article, the influence of a hydrolyzed wheat protein retarder on the hydration process, ion concentration in liquid phase, degree of supersaturation, and crystal morphology of plaster was investigated. Furthermore, the retarding mechanism and the strength loss of gypsum were also studied by scanning electron microscopy (SEM). The results indicate that the use of the hydrolyzed wheat protein retarder for plaster achieved a better retarding effect and lower strength loss. The combination of gypsum plaster with the retarder not only decreased the plaster's early hydration rate and prolonged its setting time efficiently, but also militated against the crystal morphology of dihydrate gypsum. For example, the crystal dimensions changed little, but the proportion of needle-shaped crystals decreased. Combination with calcium ions on the surface of dihydrate gypsum crystal nuclei may form a chemisorbed layer, reduce the surface energy of the crystal nuclei, and inhibit the growth of the crystal nuclei of dihydrate gypsum. Consequently, the hydration process of building gypsum becomes greatly extended and is slowed down significantly.

The Effects of Alkali Sulfate on the Hydration of a C3A−CaSO4⋅2H2O System

  • Lee, Jong-Kyu;Chu, Yong-Sik;Kwon, Choon-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.471-476
    • /
    • 2007
  • The hydration mechanism of the $3CaO{\cdot}Al_2O_3-CaSO_4{\cdot}2H_2O$ system in the presence of alkali sulfates has been investigated. The early hydration rate of $3CaO{\cdot}Al_2O_3$ was accelerated by the addition of $Na_2SO_4$ and $K_2SO_4$. This is closely related to the formation of syngenite $(CaSO_4{\cdot}K_2SO_4{\cdot}H_2O)$, and the U-phase added $K_2SO_4$ and $Na_SO_4$ in the $3CaO{\cdot}Al_2O_3-CaSO_4{\cdot}2H_2O$ system, respectively. The formation of the rigid syngenite and U-phase structure led to rapid setting and decreases the sulfate content in the liquid phase of the hydrating cement to the extent that it cannot adequately retard the hydration of $3CaO{\cdot}Al_2O_3$. In case of the alkali sulfate not added to the $3CaO{\cdot}Al_2O_3-CaSO_4{\cdot}2H_2O$ system, the ettringite was transformed to monosulfoaluminate immediately after the consumption of gypsum. However, when the alkali sulfates were added to this system, the ettringite did not transform to monosulfoaluminate immediately even though the gypsum was completely consumed. There was a stagnation period to transform to the monosufoaluminate after the consumption of gypsum because the syngenite and U-phase remained as the sulfate source.

Preparation of Shape Stabilized PCM Using Porous Materials for Application to Buildings (건축적용을 위한 다공성 물질을 이용한 상안정 PCM 제조)

  • Jeong, Su-Gwang;Yu, Seulgi;Jang, Seulae;Park, Jin-Sung;Kim, Taehyun;Lee, Jeong-Hun;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.432-437
    • /
    • 2013
  • The increase of greenhouse gas emission and decrease of fossil fuel are being caused by the indiscreet consumption of energy by people. Recently, green policy has been globally implemented to reduce energy consumption. This paper studied the research to reduce the energy consumption in buildings, by using the heat storage properties of PCM. PCM has to prevent leakage from the liquid state. Therefore, we prepared form stable PCM, by using the vacuum impregnation method. Three kinds of organic PCMs were impregnated into the structure of porous material. The characteristics of the composites were determined by using SEM, DSC, FTIR and TGA. SEM morphology showed the micro structure of silica fume/PCM. Also, thermal properties were examined by DSC and TGA analyses; and the chemical bonding of the composite was determined by FTIR analysis.

Study on establishment of emission cell test method for liquid phase building materials (방출셀을 이용한 액상건축자재 오염물질 방출시험방법 정립에 관한 연구)

  • Lim, Jungyun;Jang, Seongki;Seo, Sooyun
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.191-200
    • /
    • 2009
  • The aim of this study was to evaluate and establish of emission test method for liquid phase building materials such as paint, adhesive, sealant by emission cell. A small-scale emission chamber and emission cell were used to evaluate emission of TVOC from paint, adhesive, sealant. The quantity of TVOC emission were measured by a gas chromatography/mass spectrometry (GC/MS). Background concentration of TVOC was below $10{\mu}g/m^3$ in the emission chamber and cell. Air tightness and recovery in chamber and cell showed good results. The recovery of thermal desorber for toluene and n-dodecane were about 120%. The repeatability of response factor and retention time in GC/MS below 30%. The method detection limit of VOCs ranged 0.04~8.82 ng. The concentration of TVOC emission using emission cell was 1.35~1.41 times higher than emission chamber. The correlation of TVOC emission using chamber and cell method was significantly high (r=0.91~0.97).

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

Experimental Study on Long-term Characteristics of Sprayable Waterproofing Membrane (차수용 박층 멤브레인의 장기 성능 변화에 관한 실험 연구)

  • Choi, Soon-Wook;Kim, Jintae;Choi, Myung-Sik;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.15-23
    • /
    • 2019
  • The sprayable waterproofing membrane is a recently introduced material in the civil engineering field, and is a material that sprays and attaches a single phase or two phase powder or liquid material to a surface to be covered using a pump and nozzle. Although the material properties are gradually reported through researches, there is a lack of studies on long-term performance compared to concrete materials used with the membranes. In this study, the long-term performance of materials was estimated using the Arrhenius equation. The temperature conditions used in this study were 65℃, 80℃ and 95℃, and the temperature was maintained with the membrane attached to the concrete block for long-term behavior. Then the membranes were tested for tensile strength and adhesion strength in the order of 30, 90, 150, 200, and 300 days. The long-term performance of the material was determined from a long-term perspective by estimating the activation energy by the Arrhenius equation. Consequently, the time to reach 50% of the performance standard could be estimated by long-term test.

Facile Synthesis of Pt Nanoparticle and Graphene Composite Materials: Comparison of Electrocatalytic Activity with Analogous CNT Composite

  • Lee, Jihye;Jang, Ho Young;Jung, Insub;Yoon, Yeoheung;Jang, Hee-Jeong;Lee, Hyoyoung;Park, Sungho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1973-1978
    • /
    • 2014
  • Here, we present a facile method to synthesize Pt nanoparticles (NPs) and graphene composite materials (Pt/G) via vacuum filtration. Anodic aluminum oxide (AAO) templates were used to separate Pt/G composite and liquid phase. This method can be used to easily tune the mass ratio of Pt NPs and graphene. Pt NPs, graphene, and carbon nanotubes (CNTs) as building blocks were characterized by a variety of techniques such as scanning electron microscopy, UV-Vis spectroscopy, and Raman spectroscopy. We compared the electrocatalytic activities of Pt/G with Pt NP and CNT films (Pt/CNT) by cyclic voltammetry (CV), CO oxidation, and methanol oxidation. Pt/G was much more stable than pure Pt films. Also, Pt/G had better electrochemical activity, CO tolerance and methanol oxidation than Pt/CNT loaded with the same amount of Pt NPs due to the better dispersion of Pt NPs on graphene flakes without aggregation. We further synthesized Au@Pt disk/G and Pt nanorods/G to determine if our synthetic method can be applied to other NP shapes such as nanodisks and nanorods, for further electrocatalysis studies.