• Title/Summary/Keyword: liquid infiltration

Search Result 101, Processing Time 0.021 seconds

Manufacture of SiC-TiC System Composite by the Reaction-Bonded Sintering (반응결합 소결에 의한 SiC-TiC계 복합재료 제조)

  • 한인섭;김홍수;우상국;양준환;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.849-860
    • /
    • 1994
  • The microstructural evolution and crystalline phases of this infiltration of Ti+Al liquids in TiC, SiC, TiC+C, and SiC+C preforms have been investigated. As the Ti and Al mixing ratio in Ti+Al infiltrated liquid changes, the newly formed reaction products, which were reacted from the Ti+Al liquid with preforms, consisted of three major phases as Ti3AlC, Al2Ti4C2 or Al4C3. The TiC grain shape was changed to spheroid, when Ti3AlC was formed. In case of Al2Ti4C2 formation, the platelet grain was formed from the original TiC grain. When Al4C3 was formed, nodular or intergranular fine-grained Al4C3 was formed around the TiC grain, while the original TiC grain shape was not changed.

  • PDF

A Study on a Performance evaluation for Quality Liguid Siliceous of waterproof agent (액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • 강효진;권시원;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs to improve durability of structure. This study separately examined physical and chemical specific of quality liquid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

Effect of TiB2 Coating on the Mechanical Properties of B4C/Al Composites Prepared by Infiltration Process (TiB2코팅이 함침법으로 제조되는 B4C/Al 복합체의 기계적 특성에 미치는 영향)

  • 김선혜;임경란;심광보;김창삼
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.777-783
    • /
    • 2003
  • The mechanical properties of B$_4$C/Al composites normally depend on the species and quantity of reaction products between B$_4$C and Al and then the control of reaction products is necessary to make desirable composites for lightweight advanced or armor materials. TiB$_2$ is chemically inert with aluminum and has a lower contact angle (85$^{\circ}$ at 100$0^{\circ}C$) to liquid aluminum than B$_4$C. Thus, TiB$_2$ coating on B$_4$C may lower infiltration temperature of aluminum when the B$_4$C/Al composites is fabricated by infiltration process. In this study, the effects of TiB$_2$ on the microstructure and mechanical properties of the B$_4$C/Al composites have been investigated. TiB$_2$ coated B$_4$C powder was prepared using the sol-gel technique. It was found that the B$_4$C surface is homogeneously covered with TiB$_2$ having a particles size of 20-50 nm. While the B$_4$C/Al composites prepared by infiltration after TiB$_2$ coating had 17 wt% of unreacted Al, on the other hand, the B$_4$C/Al composites without coating included 14 wt% of Al. As a result, the composites infiltrated after the coating showed higher fracture toughness and lower hardness. This strongly suggests that TiB$_2$ not only lowers the infiltration temperature, but also inhibits the reaction between B$_4$C and Al.

Preparation and Characteristics of $Al_2O_3/TZP$ Composites Using Liquid Infiltration Technique (액상침투법을 이용한 $Al_2O_3/TZP$ 복합체의 제조 및 특성)

  • Yang, Tae-Yeong;Lee, Yun-Bok;Kim, Yeong-U;O, Gi-Dong;Park, Hong-Chae
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.321-327
    • /
    • 2000
  • Two kinds of $Al_2O_3/TZP$ composites were prepared using the liquid infiltration of 3Y-TZP and 12Ce-TZP precursors into hte sintered porous $Al_2O_3$. Small TZP additions(~11.0wt%) had increased the strength(19~59%) and fracture toughness(14~157%) of the sintered Al2O3 material($1600^{\circ}C$, 2h). The addition of 3Y-TZP was effective on case of the strength. By the way, in case of the fracture toughness that of 12Ce-TZP was effective. Infiltrated TZP was concentrated on the surface where its grain growth was enhanced and $Al_2O_3$ grain growth was effectively inhibit-ed, when compared to the inner region of the composite. The indentation crack was propagated through both intergranular modes and transgranular and the proportion if intergranular fracture was the larger in $Al_2O_3/12Ce-TZP$.

  • PDF

Milling Effects of $Y_2BaCuO_5$ Precursor Powder with $CeO_2$ Addition on the Critical Current Density of Liquid Infiltration Growth Processed $YBa_2Cu_3O_{7-y}$ Bulk Superconductors (액상 침투 성장법으로 제조된 $YBa_2Cu_3O_{7-y}$ 벌크 초전도체의 임계전류밀도에 대한 $CeO_2$ 첨가된 $Y_2BaCuO_5$ 분말의 밀링 효과)

  • Asif, Mahmood;Jun, Byung-Hyuk;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • The milling effects of a precursor $Y_2BaCuO_5$ (Y211) powder having 1 wt.% $CeO_2$ on the microstructure and critical current density ($J_c$) of liquid infiltration growth (LIG) processed $YBa_2Cu_3O_{7-y}$ (Y-123) bulk superconductors were investigated. The microstructure analysis revealed that the Y211 size in the final Y-123 products decreased with increasing the milling time and a relatively high density and uniform distribution of Y211 inclusions were observed in the sample prepared using 8 h milled powder. However, the unexpected Y211 particles coarsening was observed from the 4 h milled sample which was further increased for 10 h milled sample. Critical current density ($J_c$) of the LIG processed Y-123 bulk superconductors was found to be dependent on the milling time of the Y211 precursor powder. The $J_c$ increased with the increase of milling time and reached up to a maximum at 8 h in the self field while 10 h milled sample showed lower $J_c$ at the same field which might be due to the exaggerated growth and non-uniform distribution of Y211 particles.

The Mechanical and Tribological Properties of Silicon Carbide Bodies (탄화규소 소결체의 기계적 특성 및 마찰마모)

  • 이승훈;김홍기;김영호;이경희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1307-1314
    • /
    • 1994
  • The aim of this work is to show the way of manufacturing the SiC mechanical seal at the low temperature of 130$0^{\circ}C$ using clay and frit as source of secondary phase. $\alpha$-SiC and $\beta$-SiC powder which showed different distribution of particle were used as starting materials, i.e. average particle size of $\alpha$-SiC was larger than that of $\beta$-SiC. The mechanical and tribological properties of two groups of specimen, i.e. one contained mainly larger $\alpha$-SiC powder and the other mainly fine particle $\beta$-SiC, were measured. The specimen consisted of larger $\alpha$-SiC exhibited lower density flexural strength and wear resistance is comparison with these of sample containning mainly $\beta$-SiC . This difference could be originated from the dependence of capillary force on the particle size. For the larger SiC particle, the liquid phase may not fill the whole pores during sintering, due to low capillary force, whereas the liquid phase can infiltrate into the small ores surrounded small $\beta$-SiC particle. Thus, the course of high flexural strength and high wear resistance of specimen prepared using small particles can be explaced from the easy infiltration of liquid phase.

  • PDF

Fabrication of Porcelains Having Improved Thermal Shock Resistance by a Lithium Solution Infiltration Method (리튬용액침투법에 의한 내열충격성이 향상된 세라믹 제조)

  • Na, Sang-Moon;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.127-133
    • /
    • 2013
  • Porcelain with high thermal shock resistance was successfully fabricated by a lithium solution infiltration method with a lithium hydroxide solution. Lithium hydroxide solutions having various lithium concentrations were infiltrated into pre-sintered porcelain bodies. The porcelain sample infiltrated by the 9 wt% lithium solution and heat treated at $1250^{\circ}C$ for 1 h showed a low thermal expansion coefficient of $1.0{\times}10^{-6}/^{\circ}C$ with excellent thermal shock resistance. The highly thermally resistant porcelain had a well-developed ${\beta}$-spodumene phase with the general phases observed in porcelain. Furthermore, the porcelain showed a denser structure of $2.41g/cm^3$ sintering density and excellent whiteness in comparison with commercial thermally resistible porcelains. The lithium hydroxide in the samples readily reacted with moisture, and liquid phase reactants were formed during the fabrication process. In the case of an excess amount of lithium in the sample body, the lithium reactants were forced to the surface and re-crystallized at the surface, leaving large pores beneath the surface. These phenomena resulted in an irregular structure in the surface area and led to cracking in samples subjected to a thermal shock test.

Temporal Changes in the Hepatic Fatty Liver in Mice Receiving Standard Lieber-DeCarli Diet

  • Yin, Hu-Quan;Lee, Byung-Hoon
    • Toxicological Research
    • /
    • v.24 no.2
    • /
    • pp.113-117
    • /
    • 2008
  • Chronic exposure to ethanol induces cumulative damage to the liver starting from fatty infiltration to cirrhosis depending on the dose and duration of exposure. The whole process leading to the development of alcoholic liver disease is very complex and the mechanisms involved are not fully understood. Among many experimental animal models, Lieber-DeCarli liquid diet provides moderate to severe pathophysiological outcome depending on the compositional changes. In the present study, we investigated the temporal changes in the early phase hepatic disease in rats fed with standard Lieber-DeCarli diet. Male Wistar rats were fed with Lieber-Decarli ethanol diet for 6 weeks and the liver samples were obtained after 2, 4 and 6 weeks. Mild fatty infiltration was observed in 2 weeks of feeding and it became evident in 4 and 6 week samples. The level of hepatic triglyceride showed a good agreement with the data obtained in the pathological analysis. Feeding mice with ethanol diet resulted in the maturation and translocation of SREBP-1 to nucleus in the liver. Western blot analysis of the pooled liver sample of control and ethanol fed animals showed a clear-cut time-dependent increase in the expression of nSREBP-1. These data provide important information for selecting proper time point in experimental intervention study in the field of drug development for alcoholic liver disease.

Effect of Metal Chloride Coloring Liquids on Color and Strength Changes of Tetragonal Zirconia Polycrystals (금속염화물 착색제 침투가 정방정 지르코니아 다결정체의 색조와 강도 변화에 미치는 영향)

  • Oh, Jong-Jin;Noh, Hyeong-Rok
    • Journal of dental hygiene science
    • /
    • v.15 no.5
    • /
    • pp.577-584
    • /
    • 2015
  • The purpose of this study was to evaluate the effect of metal chloride infiltration treatment on color and strength changes of the yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). Fifty disc specimens were prepared with a Y-TZP powder (ZPEX; Tosoh, Japan). Thirty different metal chloride solutions containing 0.03~0.08 wt% chromium and 0.03~0.07 wt% terbium ions were prepared. Presintered Y-TZP specimens were soaked in metal chloride coloring liquids for 3 minutes and sintered in air at $1,450^{\circ}C$ for 2 hours. The color of the specimens was measured with spectrophotometer and color difference (${\Delta}E^*$) was obtained based on the CIE $L^*$, $a^*$, $b^*$ color coordinate values. To evaluate the effect of metal chloride infiltration strength changes, the biaxial flexural test was performed at crosshead speed 0.5 mm/min. Colors of the sintered Y-TZP showed the colors of Vita shade guide A1, A2 and A3 with the infiltration of chromium and terbium chloride solutions. Density of the sintered Y-TZP increased by the infiltration of chromium and terbium chloride solutions. Bi-axial flexural strength of the sintered Y-TZP did not show statistically significant differences by the infiltration of chromium and terbium chloride solutions (p>0.05). Chromium and terbium chloride did not affect the crystal phase of zirconia, and all specimens showed tetragonal phase. Accordingly, this study suggests that chromium and terbium chlorides can make colored zirconia while adding in a liquid form. The color of colored zirconia differ from that of vita shade guide but it can use all ceramic restoration as substructure in dental clinic.

Simulation of the Migration of 3H and 14C Radionuclides on the 2nd Phase Facility at the Wolsong LILW Disposal Center

  • Ha, Jaechul;Son, Yuhwa;Cho, Chunhyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.439-455
    • /
    • 2020
  • Numerical model was developed that simulates radionuclide (3H and 14C) transport modeling at the 2nd phase facility at the Wolsong LILW Disposal Center. Four scenarios were simulated with different assumptions about the integrity of the components of the barrier system. For the design case, the multi-barrier system was shown to be effective in diverting infiltration water around the vaults containing radioactive waste. Nevertheless, the volatile radionuclide 14C migrates outside the containment system and through the unsaturated zone, driven by gas diffusion. 3H is largely contained within the vaults where it decays, with small amounts being flushed out in the liquid state. Various scenarios were examined in which the integrity of the cover barrier system or that of the concrete were compromised. In the absence of any engineered barriers, 3H is washed out to the water table within the first 20 years. The release of 14C by gas diffusion is suppressed if percolation fluxes through the facility are high after a cover failure. However, the high fluxes lead to advective transport of 14C dissolved in the liquid state. The concrete container is an effective barrier, with approximately the same effectiveness as the cover.