• Title/Summary/Keyword: liquid fuel

Search Result 1,461, Processing Time 0.025 seconds

An Experimental Study on the Atomization Characteristics of Coal-Water-Mxture (CWM의 미립화특성에 대한 실험적 연구)

  • 김윤태;전영남;채재우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1330-1336
    • /
    • 1990
  • The factors to act on atomization of liquid fuel are viscosity, geometric shape of nozzle, atomizing pressure, etc. Most of high viscous liquid fuels show decrease in viscosity by raising the preheat temperature, but the viscosity of liquid fuel like CWM does not readily change with fuel temperature. As an experimental study to investigate the atomizing characteristics of CWM, CWM fuel is atomizing with a twin-fluid atomizer, and the effects of the geometric shape of spray nozzle on atomization are investigated by measuring the Sauter`s Mean Diameter (SMD) of CWM. The summarized results obtained in this study are as follows ; (1) As the ratio of the mass flows of atomizing air to that of fuel (W$_{a}$ /W$_{1}$) increases, 능 decreases when fuel temperature is constant. (2) At the ratio (t/d) 4 of thickness (t) of spray nozzle hole to the diameter (d) of the hole, there is the best atomization. And SMD decreases when t/d is between 1 to 4 and increases when t/d > 4.

Conceptual design of hybrid electric vertical take-off and landing (eVTOL) aircraft with a liquid hydrogen fuel tank

  • Kim, Jinwook;Kwon, Dohoon;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.27-38
    • /
    • 2022
  • Urban air mobility (UAM) has recently attracted lots of attention as a solution to urban centralization and global warming. Electric vertical take-off and landing (eVTOL) is a concept that emerges as one of the promising and clean technologies for UAM. There are two difficult challenges for eVTOL aircraft to solve. One is how to improve the weight efficiency of aircraft, and the other is how to complete long-range missions for UAM's flight scenarios. To approach these challenges, we propose a consolidated concept design of battery-fuel cell hybrid tiltrotor aircraft with a liquid hydrogen (LH2) fuel tank. The efficiency of a battery-fuel cell hybrid powertrain system on the designed eVTOL aircraft is compared to that of a battery-only powertrain system. This paper shows how much payload can increase and the flight scenario can be improved by hybridizing the battery and fuel cell and presenting a detailed concept of a cryogenic storage tank for LH2.

Prediction of Maximum Liquid-phase Penetration in Diesel Spray: A review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.117-125
    • /
    • 2008
  • The correlations for the prediction of maximum liquid-phase penetration in diesel spray are reviewed in this study. The existing models developed for the prediction of maximum liquid-phase penetration can be categorized as the zero-dimensional (empirical) model, the multi-dimensional model and the other model. The existing zero-dimensional model can be classified into four groups and the existing multidimensional models can be classified into three groups. The other model includes holistic hydraulic and spray model. The maximum liquid-phase penetration is mainly affected by nozzle diameter, fuel volatility, injection pressure, ambient gas pressure, ambient gas density and fuel temperature. In the case of empirical correlations incorporated with spray angle, the predicted results will be different according to the selection of correlation for spray angle. The research for the effect of boiling point temperatures on maximum liquid-phase penetration is required. In the case of multidimensional model, there exist problems of the grid and spray sub-models dependency effects.

  • PDF

Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air Condition (고압 유동조건에서의 액체 램제트 엔진의 분무특성)

  • Youn, H.J.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.34-40
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its characteristics and devising a means of fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and the jet penetrations in the high pressure conditions have a similar tendency. In the dual orifice injectors, the jet penetrations of rare orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rare orifice is increased because of the drag reduction created by the jet column of the front orifice. Because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual orifice injector is much larger than the jet penetrations of single orifice injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

A Study on Evaporative Characteristics of Multi-component Mixed Fuels Using Mie Scattered Light and Shadowgraph Images (Mie 산란광법 및 Shadowgraph법을 이용한 다성분 혼합연료의 증발특성연구)

  • Yoon, Jun-Kyu;Myong, Kwang-Jae;Jiro Senda;Fujimoto Hajime;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.682-691
    • /
    • 2006
  • This study was conducted to assess the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the various ambient conditions. Spray structure and spatial distribution of liquid phase concentration are investigated using a thin laser sheet illumination technique on the multi-component mixed fuels. A pulsed Ar+ laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contain $i-octane(C_8H_{18}),\;n-dodecane(C_{12}H_{26})$ and $n-hexadecane(C_{16}H_{34})$ that are selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 25Mpa, 42MPa, 72MPa and 112MPa in injection pressure, $5kg/m^3,\;15kg/m^3\;and\;20kg/m^3$ in ambient gas density, 400K, 500K, 600K and 700K in ambient gas temperature, 300K and 368K in fuel temperature, and different fuel mass fraction. Experimental results indicate that the more high-boiling point component, the longer the liquid phase it were closely related to fuel physical properties, but injection pressure had no effect on. And there was a high correlation between the liquid phase length and boiling temperature at 75% distillation point.

Volume Variation of Liquid Fuel by Seasonal, Regional Temperature Changes (계절적, 지역적 온도 변화에 따른 석유류 체적의 변화)

  • Lim, Ki Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.155-163
    • /
    • 2014
  • At gas stations, liquid fuels expand and contract in volume owing to temperature variations. In Korea, the ambient temperature varies between $-15^{\circ}C$ in winter and $35^{\circ}C$ in summer. The volume expansion coefficients of liquid fuels are about $0.1%/^{\circ}C$. To investigate this issue, we measured daily changes in fuel temperature and the delivered fuel temperature at gas stations. In addition, we scrutinized the daily, monthly, and annual changes in temperature over past 50 years in Korea. The results show that the temperature of the fuel in the storage tank was maintained at a stable value(summer or winter). Many factors, such as the surrounding conditions, fuel filling frequency, and gas station location, influence the delivered fuel temperature. The results of this study can be applied for establishing a national regulation and will contribute to fair transactions.

Analysis of Spacecraft Attitude Dynamics Interacting with Liquid Fuel Sloshing (액체 연료의 슬라슁과 상호작용하는 우주 탐사선의 자세 운동 분석)

  • Jin, Jaehyun;Kim, Su-Kyum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1059-1068
    • /
    • 2017
  • Space exploration spacecraft carry large amounts of liquid fuel, often more than half. In such cases, the liquid fuel sloshing must be considered in the design of the spacecraft since the sloshing can affects the stability of the spacecraft. In this paper, we present the results of analyzing the sloshing of fuel and the dynamic behavior of the spacecraft. For the purpose, a model in which the maneuvering of the spacecraft causes the sloshing and a model in which the reaction force and moment due to the sloshing are transmitted to the spacecraft are developed. The dynamical behavior of the spacecraft are analyzed using a simulation program coded by Modelica.

A Study on the Minimum Ignition Energy Measurements for Liquid Jet A1 Fuel under at Elevated Oxygen Concentrations and Reduced Atmospheric Pressures (고산소-저기압 환경에서 JET A1 액체연료의 최소점화에너지 측정에 관한 연구)

  • Kwon, Haeng-Jun;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.88-93
    • /
    • 2017
  • In the present study, the ignition characteristics of liquid fuel were experimentally investigated. To quantify its ignitability as ignition characteristics, the minimum ignition energy (MIE) of liquid fuel was defined and measured under at the elevated oxygen concentrations and reduced atmospheric pressures which that are the most probable conditions likely to be encountered during operation of the space launch vehicle's operating process. The experimental results demonstrate that the measured MIE decreased with the increasing the oxygen concentration at given atmospheric pressures. When the atmospheric pressure was reduced from 1 atm to 0.2 atm at a fixed oxygen concentration, the measured MIE was found to vary with $P^{-2}$ but the lowest MIE was observed at 0.8 atm.

Leakage Characteristics of LPG injector with Low Viscosity LPG Fuel (저점도 LPG연료 인젝터의 누설특성에 관한 연구)

  • Kim, C.U.;Park, C.W.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.8-15
    • /
    • 2005
  • The use of clean gaseous fuels for the purpose of high efficiency and low emission in automotive engines has tendency to increase in order to meet the reinforcing emission regulations and to efficiently utilize limited natural resources. Automotive companies developed and commercialized a LPG liquid injection system, which is mounted on LPLi(Liquid Phase LPG Injection) engines and vehicles based on this research trend. This research examines the biggest problem in LPLi engine, that is, the leakage characteristics of low viscosity LPG fuel according to the injector design variables. This study is also aimed to improve the performance of fuel-leakage in LPLi engine through the addition of a lubrication improver in HFRR(High Frequency Reciprocating Rig) facility. The needle displacement and the spring displacement of an LPLi injector are found to be already optimized. The possibility of a maximum of 70% leakage reduction compared to a conventional case, is verified when 1000ppm of a lubrication improvement material is added and 40% increase of a injector spring constant (K) is applied.

  • PDF

Comparison of Effectiveness for Performance Tuning of Liquid Rocket Engine

  • Cho, Won Kook;Kim, Chun Il
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.16-22
    • /
    • 2018
  • An analysis has been made on the performance variation due to pressure drop change at propellant supply pipes of liquid rocket engine. The objective is to compare the effectiveness of control variables to tune the liquid rocket engine performance. The mode analysis program has been used to estimate the engine performance for different modes which is realized by controlling the flow rate of propellant. The oxidizer of combustion chamber, the fuel of combustion chamber, the oxidizer of gas generator and the fuel of gas generator are the independent variables to control engine thrust, engine mixture ratio and temperature of gas generator product gas. The analysis program is validated by comparing with the powerpack test results. The error range of compared variables is order of 4%. After comparison of tuning effectiveness it is turned out that the pressure drop at oxidizer pipe of gas generator and pressure drop at combustion chamber fuel pipe and the pressure drop at the fuel pipe of gas generator can effectively tune the thrust of engine, mixture ratio of engine and temperature of product gas from gas generator respectively.