• Title/Summary/Keyword: liquid dodecane

Search Result 33, Processing Time 0.026 seconds

Catalysts for Hydroisomerization of Synthesis-Oil for Bio-jet fuel Production (Bio-jet fuel 제조용 합성원유 수첨이성화 촉매)

  • Yun, So-Young;Lee, Eun-Ok;Park, Young-Kwon;Jeon, Jong-Ki;Jeong, Soon-Yong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.795-796
    • /
    • 2010
  • Interest has been increasing worldwide in Fischer-Tropsch synthesis (F-T) as a method of producing synthetic liquid fuels from biomass. Hydroisomerization of $C_7-C_{15}$ paraffins applies to production of diesel fuel with high cetane number and improved cold flow properties, such as viscosity, pour point and freezing point. The commercial products such as fuel jet produced from F-T synthesis should have low freezing and pour points. In this study, our major aim is to develop a catalyst for hydroisomerization of synthesis-oil for bio-jet fuel. Effects of zeolites and platinum loading on hydroisomerization of dodecane were investigated as a model reaction in a batch reactor.

  • PDF

Endothermic Properties of Liquid Fuel Decomposition Catalyst Using Metal Foam Support (메탈폼 지지체를 이용한 액체연료 분해반응 촉매의 흡열특성)

  • Mun, Jeongin;Kim, Nari;Jeong, Byunghun;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.481-486
    • /
    • 2021
  • In a hypersonic vehicle to solve the heat problem generated during flight, a cooling technology is being developed which uses the endothermic effect that appears during the decomposition reaction of the mounted fuel. In this study, the decomposition reaction of n-dodecane fuel was performed using HZSM-5 as a catalyst, and the catalyst was coated on metal foam to maximize the endothermic effect of the catalytic decomposition reaction and suppress coke formation. The reactor was a stainless steel flow reactor with a outer diameter of 1.27 cm, and the reaction temperature was 550 ℃, the reaction pressure was 4 MPa, and the flow rate was 12 ml per minute. As a result of the catalytic decomposition reaction using a catalyst coated with HZSM-5 on the metal foam, the heat sink was 2887 kJ/kg as a maximum, the gas phase conversion rate was 34%, and the amount of coke produced on the metal foam decreased by about 56% as the catalyst was coated compared to the uncoated catalyst.

Viscosity and Diffusion Constants Calculation of n-Alkanes by Molecular Dynamics Simulations

  • Lee, Song-Hi;Chang, Tai-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1590-1598
    • /
    • 2003
  • In this paper we have presented the results for viscosity and self-diffusion constants of model systems for four liquid n-alkanes ($C_{12}, C_{20}, C_{32}, and C_{44}$) in a canonical ensemble at several temperatures using molecular dynamics (MD) simulations. The small chains of these n-alkanes are clearly $<{R_{ee}}^2>/6<{R_g}^2>>1$, which leads to the conclusion that the liquid n-alkanes over the whole temperatures considered are far away from the Rouse regime. Calculated viscosity ${\eta}$ and self-diffusion constants D are comparable with experimental results and the temperature dependence of both ${\eta}$ and D is suitably described by the Arrhenius plot. The behavior of both activation energies, $E_{\eta}$ and $E_D$, with increasing chain length indicates that the activation energies approach asymptotic values as n increases to the higher value, which is experimentally observed. Two calculated monomeric friction constants ${\zeta}$ and ${\zeta}_D$ give a correct qualitative trend: decrease with increasing temperature and increase with increasing chain length n. Comparison of the time auto-correlation functions of the end-to-end vector calculated from the Rouse model for n-dodecane ($C_{12}$) at 273 K and for n-tetratetracontane ($C_{44}$) at 473 K with those extracted directly from our MD simulations confirms that the short chain n-alkanes considered in this study are far away from the Rouse regime.

SPRAY CHARACTERISTICS OF DIRECTLY INJECTED LPG

  • Lee, S.W.;Y. Daisho
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.239-245
    • /
    • 2004
  • It has been recognized that alternative fuels such as Liquid Petroleum Gas (LPG) show less polluting combustion characteristics than diesel fuel. Furthermore, engine performance is expected to be nearly equal to that of the diesel engine if direct-injection stratified-charge combustion of the LPG can be adopted in the spark-ignition engine. However, spray characteristics of LPG are quite different from those of diesel fuel. understanding the spray characteristics of LPG and evaporating processes are very important for developing efficient and low emission LPG engines optimized in fuel injection control and combustion processes. In this study, the LPG spray characteristics and evaporating processes were investigated using the Schlieren and Mie scattering optical system and single-hole injectors in a constant volume chamber. The results show that the mixture moves along the impingement wall that reproduced the piston bowl and reaches in ignition spark plug. LPG spray receives more influence of ambient pressure and temperature significantly than that of n-dodecane spray.

Effect of pH and Iron/Manganese Ion on TiO2 Mediated Photocatalytic Inactivation of Index Microorganisms (LNAPL을 이용한 지중 산소전달 향상: (I) Abiotic Condition)

  • Ha, Jeong-Hyub;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.307-311
    • /
    • 2004
  • The objective of this work is to evaluate the hypothesis that a good technique for supplying oxygen to the saturated zone in the presence of light nonaqueous phase liquid (LNAPL) pool contamination at the water table is to pass air through the unsaturated zone above the pool. This hypothesis was evaluated in experimental studies performed using a bench-scale, sand-tank reactor, Steady-state abiotic experiments in the sand-tank reactor with air flowing through the reactor headspace demonstrated that oxygen supply through the water table interface into the saturated zone was enhanced when an LNAPL (dodecane) pool was present at the water table. These experimental results confirmed the hypothesis that an LNAPL pool can serve as a high concentration oxygen source to the oxygen-limited area beneath the pool and, as a result, enhance the in situ biodegradation rate.

A Study on Evaporative Characteristics of Multi-component Mixed Fuels Using Mie Scattered Light and Shadowgraph Images (Mie 산란광법 및 Shadowgraph법을 이용한 다성분 혼합연료의 증발특성연구)

  • Yoon, Jun-Kyu;Myong, Kwang-Jae;Jiro Senda;Fujimoto Hajime;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.682-691
    • /
    • 2006
  • This study was conducted to assess the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the various ambient conditions. Spray structure and spatial distribution of liquid phase concentration are investigated using a thin laser sheet illumination technique on the multi-component mixed fuels. A pulsed Ar+ laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contain $i-octane(C_8H_{18}),\;n-dodecane(C_{12}H_{26})$ and $n-hexadecane(C_{16}H_{34})$ that are selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 25Mpa, 42MPa, 72MPa and 112MPa in injection pressure, $5kg/m^3,\;15kg/m^3\;and\;20kg/m^3$ in ambient gas density, 400K, 500K, 600K and 700K in ambient gas temperature, 300K and 368K in fuel temperature, and different fuel mass fraction. Experimental results indicate that the more high-boiling point component, the longer the liquid phase it were closely related to fuel physical properties, but injection pressure had no effect on. And there was a high correlation between the liquid phase length and boiling temperature at 75% distillation point.

Measurement of Ignition Delay Time of Jet Aviation Fuel (혼합 액체 연료인 항공유의 점화지연시간 측정에 관한 연구)

  • Han, Hee Sun;Wang, YuanGang;Kim, Chul Jin;Sohn, Chae Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.35-40
    • /
    • 2017
  • Jet aviation fuel is one of liquid fuel which are used in aircraft engines. Korean domestic jet fuel, called Jet A-1, is tested for measurement of ignition delay time by using a shock tube manufactured recently. The temperature varies from 680 to 1250 K and the pressure and equivalence ratio of Jet A-1/air are fixed 20 atm and 1.0, respectively, for this experiment. The ignition delay time data of Jet A-1 are compared with those of Jet A, which has similar properties to Jet A-1. The behavior of negative-temperature-coefficient (NTC) is observed in the temperature range 750-900 K. In addition, ignition delay time of iso-octane is measured, which is one of the surrogate components for jet aviation fuel. The experimental data are compared and validated with the previous results from the literatures. A surrogate fuel for the present Jet A-1 consists of 45.2% n-dodecane, 32.1% iso-octane, and 22.7% 1,3,5-trimethylbenzene. The predicted ignition delay time for the surrogate agrees well with the measured one for Jet A-1.

An Experimental Analysis on the Spray Structure of Multi-component Fuels Using Magnification Photograph and Mie Scattering Images (확대촬영법 및 Mie 산란광법을 이용한 다성분연료의 분무구조에 관한 실험적 해명)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.707-716
    • /
    • 2008
  • The objective of this study was to analyze the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the variant ambient conditions. Spray structure and spatial distribution of liquid phase concentration were investigated using a thin laser sheet illumination technique on the three component mixed fuels. A pulsed Nd:YAG laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contains i-octane($C_8H_{18}$), n-dodecane($C_{12}H_{26}$) and n-hexadecane($C_{16}H_{34}$) that were selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 42 MPa, 72 MPa and 112 MPa in injection pressure, $5\;kg/m^3$, $15kg/m^3$ and $30kg/m^3$ in ambient gas density, 300 K, 500 K, 600 K and 700 K in ambient gas temperature, 300 K and 368 K in fuel temperature and different fuel mass fraction. Experimental results indicated that the multi-component fuels made two phase region mixed vapor and liquid so that it would are helpful to improve combustion, for the fuels of high boiling point component could accelerate evaporation very much according as low boiling point fuel was added to high boiling point fuel.

Study on establishment of emission cell test method for liquid phase building materials (방출셀을 이용한 액상건축자재 오염물질 방출시험방법 정립에 관한 연구)

  • Lim, Jungyun;Jang, Seongki;Seo, Sooyun
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.191-200
    • /
    • 2009
  • The aim of this study was to evaluate and establish of emission test method for liquid phase building materials such as paint, adhesive, sealant by emission cell. A small-scale emission chamber and emission cell were used to evaluate emission of TVOC from paint, adhesive, sealant. The quantity of TVOC emission were measured by a gas chromatography/mass spectrometry (GC/MS). Background concentration of TVOC was below $10{\mu}g/m^3$ in the emission chamber and cell. Air tightness and recovery in chamber and cell showed good results. The recovery of thermal desorber for toluene and n-dodecane were about 120%. The repeatability of response factor and retention time in GC/MS below 30%. The method detection limit of VOCs ranged 0.04~8.82 ng. The concentration of TVOC emission using emission cell was 1.35~1.41 times higher than emission chamber. The correlation of TVOC emission using chamber and cell method was significantly high (r=0.91~0.97).

Characteristics of VOCs and Formaldehyde Emitted from Floorings (바닥재로부터 방출되는 휘발성유기화합물과 폼알데하이드 특성)

  • Park, Hyun-Ju;Jang, Seong-Ki;Seo, Soo-Yun;Lim, Jun-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • Since the seventies and the oil crisis, energy-saving measures have led to a reduction in the ventilation of room. The use of synthetic materials which emit various chemical substances had led to an increase in the concentration of indoor pollutants. "Sick building syndrome (SBS)" and "Sick house syndrome (SHS)" are worldwide problems. Also, the number of complaints about indoor air pollution caused by VOCs (Volatile organic compound) and HCHO (Formaldehyde) has increased. It is important that evaluating and understanding emission of indoor air pollutant from building materials. The object of this study was to evaluate emission test method for flooring such as wood based flooring, carpet tile, rubber tile, PVC sheet and tile, and to determine emission of TVOC and form-aldehyde. The quantity of TVOC and carbonyl compounds emission were sampled and measured by Tenax TA and gas chromatography/mass spectrometry (GC/MSD), 2,4-DNPH cartrige with ozone scrubber and high performance liquid from flooring. The TVOC concentration emitted from carpet tile was ($7.419\;mg/m^2 h$) the highest among 5 groups of test materials. In wood based flooring and PVC tile, the emitted concentration of toluene was high. And the dodecane emission was highest in carpet. The concentration of TVOC decreased by an increase in emission test period. After 7 days, the concentration of TVOC from floorings were about 50% below of the concentration at the first day. TVOC emission from wood based flooring, carpet tile, rubber tile, PVC sheet and tile were decreased in 28 days and remained steady after about 15 days. The concentration of formaldehyde emission from floorings showed extremely low.