• Title/Summary/Keyword: liquid displacement efficiency

Search Result 11, Processing Time 0.024 seconds

Role of network geometry on fluid displacement in microfluidic color-changing windows

  • Ucar, Ahmet Burak;Velev, Orlin D.;Koo, Hyung-Jun
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.865-884
    • /
    • 2016
  • We have previously demonstrated a microfluidic elastomer, which changes apparent color and could have potential applications in smart windows. The practical use of such functional microfluidic systems requires rapid and uniform fluid displacement throughout the channel network with minimal amount of liquid supply. The goal of this simulation study is to design various microfluidic networks for similar applications including, but not limited to, the color-switching windows and compare the liquid displacement speed and efficiency of the designs. We numerically simulate and analyze the liquid displacement in the microfluidic networks with serpentine, parallel and lattice channel configurations, as well as their modified versions with wide or tapered distributor and collector channels. The data are analyzed on the basis of numerical criteria defined to evaluate the performance of the corresponding functional systems. We found that the lattice channel network geometry with the tapered distributors and collectors provides most rapid and uniform fluid displacement with minimum liquid waste. The simulation results could give an important guideline for efficient liquid supply/displacement in emerging functional systems with embedded microfluidic networks.

Leakage Characteristics of LPG injector with Low Viscosity LPG Fuel (저점도 LPG연료 인젝터의 누설특성에 관한 연구)

  • Kim, C.U.;Park, C.W.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.8-15
    • /
    • 2005
  • The use of clean gaseous fuels for the purpose of high efficiency and low emission in automotive engines has tendency to increase in order to meet the reinforcing emission regulations and to efficiently utilize limited natural resources. Automotive companies developed and commercialized a LPG liquid injection system, which is mounted on LPLi(Liquid Phase LPG Injection) engines and vehicles based on this research trend. This research examines the biggest problem in LPLi engine, that is, the leakage characteristics of low viscosity LPG fuel according to the injector design variables. This study is also aimed to improve the performance of fuel-leakage in LPLi engine through the addition of a lubrication improver in HFRR(High Frequency Reciprocating Rig) facility. The needle displacement and the spring displacement of an LPLi injector are found to be already optimized. The possibility of a maximum of 70% leakage reduction compared to a conventional case, is verified when 1000ppm of a lubrication improvement material is added and 40% increase of a injector spring constant (K) is applied.

  • PDF

Experimental study on TLDs equipped with an upper mounted baffle

  • Shad, Hossein;Adnan, Azlan bin;Vafaei, Mohammadreza;Behbahani, Hamid Pesaran;Oladimeji, Abdulkareem M.
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.37-51
    • /
    • 2018
  • Tuned Liquid Dampers (TLDs) have gained wide acceptance as a system for structural control and energy dissipation. However, they face limitation caused by low damping in deep water, which affects their efficiency. Another problem with deep water TLDs is that not all water depth participates in energy dissipation. This paper investigated the effect of upper mounted baffles on the effectiveness of TLDs. The Vertical Blockage Ratio (VBR) of baffles ranged from 10% - 90%. The TLD (with and without baffle), structure, and combined structure with TLD (with and without baffles) were subjected to free and harmonic forced vibrations. Results indicated that baffles could significantly enhance the energy dissipation of TLDs, thus reducing structural responses more than structures equipped with ordinary TLDs. It was found that, there was an optimum value of VBR in which the TLD's efficiency was maximized. When TLD had an appropriate VBR, the structural acceleration and displacement responses were suppressed significantly up to 51% and 56%, respectively.

A study on Greenhouse gas Emission Characteristics of Conventional Passenger and Hybrid Electric Vehicles (승용 및 하이브리드 자동차 온실가스 배출특성 연구)

  • Lim, Yun Sung;Mun, Sun Hee;Chung, Taek Ho;Lee, Jong Tae;Dong, Jong In
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 2020
  • Automotive manufacturers are applying technologies for greenhouse gas reduction such as vehicle weight reduction, engine downsizing, direct injection technology, variable valves and transmission performance improvement to achieve the targets for enhanced greenhouse gas and fuel consumption efficiency. In this paper, compared and analyzed greenhouse emissions according to engine capacity, engine displacement, curb weight and sales volume of hybrid and internal combustion engine passenger vehicles. Hybrid emit 32~39% less greenhouse gas than internal combustion engines through the combined mode test method. Hybrid electric vehicle's curb weight was about 7% heavier on average for the same engine displacement, while greenhouse gas was about 36% lower. It was confirmed that in order to reduce the emission of pollutants of greenhouse gases as well as the air pollutants, it is necessary to expand the supply of eco-friendly vehicles.

Effect of Controlling Exhaust Valve Timing on Engine Efficiency in LIVC and EIVC States in a 2-Cylinder Small Turbo Gasoline Engine (2기통 소형 터보가솔린엔진에서 배기 밸브 타이밍 제어에 따른 LIVC, EIVC 상태에서의 엔진 효율 영향)

  • Jang, Jinyoung;Woo, Youngmin;Shin, Youngjin;Ko, Ahyun;Jung, Yongjin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Han, Myunghoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • This study examines whether engine fuel efficiency is improved by optimization of the exhaust valve timing in a state where the intake valve timing has been optimized in a small turbo gasoline engine that has intake cams and exhaust cams with fixed valve opening periods. When the exhaust valve is opened late, the expansion stroke is longer, and the efficiency can be improved. A 2-cylinder turbo gasoline engine with 0.8 liters of displacement and an MPI (Multi Point Injection) fuel system was used. The engine was operated at 1,500 and 3,000 rpm, and the load conditions included a partial load of 50 N·m and a high load of 70 N·m. Data was recorded as the exhaust valve timing was controlled, and this was used to calculate the efficiency of combustion using a heat release, the fuel conversion efficiency, and the pumping loss. Results and the hydrocarbon concentrations in the exhaust gas were compared for each condition. Experiment results confirmed that additional fuel efficiency improvements are possible through exhaust valve timing control at 1,500 rpm and 50 N·m. However, in other operating conditions, fuel efficiency improvements could not be obtained through exhaust valve timing control because cases where the pumping loss and fuel/air mixture slip increased when the exhaust valve timing changed and the fuel efficiency declined.

Experimental study on a new damping device for mitigation of structural vibrations under harmonic excitation

  • Alih, Sophia C.;Vafaei, Mohammadreza;Ismail, Nufail;Pabarja, Ali
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.567-576
    • /
    • 2018
  • This manuscript introduces a new damping device which is composed of a water tank and a pendulum. The new damping device can be tuned to multiple frequencies. In addition, it has a higher energy dissipation capacity when compared with the conventional Tuned Liquid Dampers (TLDs). In order to evaluate the efficiency of this new damping device a series of free vibration and forced vibration tests were conducted on a scaled down single-story one-bay steel frame. Two different configurations were studied for the mass of the pendulum that included a completely and a partially submerged mass. It was observed that the completely submerged configuration led to 44% higher damping ratio when compared with the conventional TLD. In addition, the completely submerged configuration reduced the peak displacement response of the structure 1.6 times more than the conventional TLD. The peak acceleration response of the structure equipped with the new damping device was reduced twice more than the conventional TLD. It was also found that, when the excitation frequency is lower than the resonance frequency, the conventional TLD performs better than the partially submerged configuration of the new damping device.

A Study on Exhaust Gas Characteristics of Heavy-duty Diesel Engines through Actual Vehicle Application of Non-influenced Temperature Condition Type Active Regeneration Method (온도조건 비영향형 복합재생방식 DPF의 실차적용을 통한 대형디젤기관의 배출가스 특성 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.53-59
    • /
    • 2024
  • Cars are one of the main causes of air pollution in large cities, and 34.6% of domestic air pollution emissions come from mobile sources, of which cars account for 69.6%. In particular, the importance of nitrogen oxides (NOx) and particulate matter (PM), which are major pollutants in diesel vehicles, is increasing due to their high contribution to emissions. Therefore, in this study, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation was solved by applying a complex regeneration DPF that is not affected by temperature conditions to large diesel vehicles with higher driving time and engine displacement than small and medium-sized vehicles. And the feasibility of application to large diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the reduction efficiency test on the actual vehicle durability product, PM showed a reduction efficiency of 84% to 86%, and the reduction efficiency of gaseous substances showed a high reduction efficiency of over 90%. The actual vehicle applicability test was completed with three driving patterns: village bus vehicle, police car, and road-going construction equipment vehicle, and no device problems occurred until the end of the test. Both load and no-load smoke measurement results showed a smoke reduction efficiency of over 96%.

Effects of Hydrogen-enriched LPG Fuelled Engine on Exhaust Emission and Thermal Efficiency [II] (LPG엔진에서 수소첨가가 배기 성능과 열효율에 미치는 영향 [II])

  • Kwon, T.Y.;Kim, J.H.;Choi, G.H.;Chung, Y.J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.297-303
    • /
    • 2002
  • The purpose of study is obtaining low-emission and high-efficiency in LPi engine with hydrogen enrichment. The test engine was named variable compression ratio single cylinder engine (VACRE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. A varied sensors such as crank shaft position sensor (CPS) and hall sensor supplies spark timing data to ignition controller. Displacement of VACRE is $1858.2cm^3$. VACRE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio($\lambda$) of this work was varied between 0,8 and 1.5.

Polymer-Supported Crown Ethers (II). Efficiency for Phase Transfer Catalyst (고분자 물질로 지지된 크라운 에테르류(II) 상이동 촉매 효능)

  • Jae Hu Shim;Kwang Bo Chung;Seung Hyun Chang;Dae Kyung Song;Yong Kiel Sung
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.593-602
    • /
    • 1988
  • Polymer-supported crown ethers (Ps-CE) which can be used for phase-transfer catalyst (PTC) were synthesized for the purpose of allowing reusable function to ordinary crown ethers, and the kinetics of the liquid-solid-liquid triphase-catalyzed nucleophilic displacement reaction of iodide (aqueous phase) on 1-bromooctane (organic phase) using synthesized Ps-CE (solid) were studied. Ps-CE were obtained by grafting of hydroxymethyl crown ethers to 1~2% cross-linked chloromethylated polystyrene. All reactions followed a pseudo-first order dependency on the 1-bromooctane concentration and the observed rate constants $(k_{obsd})$ were linearly related to the molar equivalents of Ps-CE, and were subjected to the influence of cross-linking density of polymer backbone, solvent and the reaction temperature. The catalytic activity of Ps-CE was also compared with that of structurally similar soluble crown ethers, and used Ps-CE were easily recovered after the reaction by simple filtration and could be reused without loss of catalytic activity in the same anionic displacement reaction. Enthalpies and entropies of activation associated with the displacement were 10~20kcal $mol^{-1}, 20~55eu. respectively, and the free energy of activation was ~30kcal mol^{-1}$.

  • PDF

A Study on Elastic Guided Wave Modal Characteristics in Multi-Layered Structures (적층내 탄성 유도초음파의 모드 특성에 관한 연구)

  • Cho, Youn-Ho;Lee, Chong-Myoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.211-216
    • /
    • 2008
  • In this study, we have developed a program which can calculate phase and group velocities, attenuation and wave structures of each mode in multi-layered plates. The wave structures of each mode are obtained, varying material properties and number of layers. The key in the success of guided wave NDE is how to optimize the mode selection scheme by minimizing energy loss when a structure is in contact with liquid. In this study, the normalized out-of-plane displacements at the surface of a free plate are used to predict the variation of modal attenuation and verily the correlation between attenuation and wave structure. It turns out that the guided wave attenuation can be efficiently obtain from the out-of-plane displacement variation of a free wave guide alleviating such mathematical difficulties in extracting complex roots for the eigenvalue problem of a liquid loaded wave guide. Through this study, the concert to optimize guided wave mode selection is accomplished to enhance sensitivity and efficiency in nondestructive evaluation for multi-layered structures.